Элеваторный узел системы отопления – принцип работы. Как тепло попадает в наши квартиры

1.
2.
3.
4.
5.
6.
7.

На территории России обычно используется система центрального отопления многоквартирного дома, теплоноситель в которую поступает от городской котельной или ТЭЦ. При этом водяные контуры обустраивают по разным схемам, поскольку они бывают однотрубными и двухтрубными. Обычно потребителей тепла мало интересуют подобные нюансы, но при необходимости произвести ремонт квартиры и поменять старые батареи на новые современные отопительные радиаторы в подобных тонкостях владельцам жилой недвижимости желательно разбираться.

Индивидуальное отопление в жилых домах

Помимо центрального можно встретить автономное отопление квартиры в многоквартирном доме, обычно такая подача тепла встречается редко и в последние годы устанавливается в новостройках. Также местные системы теплоснабжения используют в частном жилом секторе. При котельную принято располагать или в самом здании в отдельном помещении или поблизости от дома, поскольку требуется регулировать .

Кроме этого в многоквартирных домах используют зависимые отопительные системы. В таком случае теплоноситель транспортируют в квартирные батареи без дополнительного распределения прямо с ТЭЦ. При этом температура воды находится вне зависимости от того, подается она через распределительный пункт или непосредственно потребителям.

Виды систем отопления многоквартирного дома бывают открытыми или закрытыми (детальнее: " ").

В последнем варианте теплоноситель с ТЭЦ или центральной котельной после попадания в распределительный пункт подается раздельно на отопительные радиаторы и на горячее водоснабжение. В открытых системах подобное разделение конструкцией не предусмотрено и подогретая вода для нужд жильцов поставляется с магистральной трубы, поэтому потребители вне отопительного сезона остаются без горячего водоснабжения, что вызывает немало нареканий в адрес коммунальных служб. Читайте также: " ".

Однотрубная отопительная система

Однотрубное теплоснабжение многоквартирного дома имеет массу недостатков, главным среди которых являются значительные потери тепла в процессе транспортировки горячей воды. В данном контуре теплоноситель подают снизу вверх, после чего он попадает в батареи, отдает тепло и возвращается назад в ту же самую трубу. К конечным потребителям, проживающим на верхних этажах, прежде горячая вода доходит в еле теплом состоянии.

Бывают случаи, когда однотрубную систему еще дополнительно упрощают, стараясь увеличить температуру теплоносителя в радиаторах. Для этого батарею врезают напрямую в трубу. В итоге, кажется, что радиатор является ее продолжением. Но от подобного подключения больше тепла получают только первые пользователи системы, а к последним потребителям вода доходит практически холодной (прочитайте также: " "). Кроме этого однотрубное теплоснабжение многоквартирного дома делает невозможной регулировку радиаторов – после уменьшения подачи теплоносителя в отдельной батарее также снижается водоток по всей длине трубы.

Еще одним недостатком такого теплоснабжения является невозможность замены радиатора в отопительный сезон без слива воды со всей системы. В подобных случаях необходима установка перемычек, благодаря чему появляется возможность отключить батарею, а теплоноситель направить по ним.

Не имеет значения, каким образом подключена батарея – к трубе стояка или лежака, теплоноситель имеет постоянную температуру на всем пути его транспортировки по трубам подачи.

Одним из важных преимуществ двухтрубных водяных контуров считается регулировка системы отопления многоквартирного дома на уровне каждой отдельной батареи путем установки на ней кранов с термостатом (прочитайте также: " "). В результате в квартире обеспечивается автоматическое поддержание нужного температурного режима. В двухтрубном контуре доступно использование радиаторов отопления как с подключением нижним, так и с боковым. Также можно применять разное движение теплоносителя - тупиковое и попутное.

Горячее водоснабжение в системах отопления

ГВС в многоэтажных домах обычно является централизованным, при этом вода нагревается в котельных. Подключают горячее водоснабжение от контуров отопления, причем и от однотрубных, и от двухтрубных. Температура в кране с горячей водой по утрам бывает теплой или холодной, что зависит от количества магистральных труб. Если имеется однотрубное теплоснабжение многоквартирного дома высотой в 5 этажей, то при открытии горячего крана сначала в течение полминуты из него пойдет холодная вода.

Причина кроется в том, что ночью редко кто из жильцов включает кран с горячим водоснабжением, и теплоноситель в трубах остывает. В результате наблюдается перерасход ненужной остывшей воды, поскольку она сливается напрямую в канализацию.

В отличие от однотрубной системы в двухтрубном варианте циркуляция горячей воды происходит непрерывно, поэтому вышеописанной проблемы с ГВС там не возникает. Правда, в некоторых домах через систему горячего водоснабжения закольцовывают стояк с трубами – полотенцесушителями, которые даже в летнюю жару горячие.

Многих потребители интересует проблема с ГВС после того, как завершился отопительный сезон. Иногда горячая вода пропадает на длительное время. Дело в том, что коммунальные службы обязаны соблюдать правила отопления многоквартирных домов, согласно которым необходимо производить постотопительные испытания систем теплоснабжения (прочитайте также: " "). Такая работа не выполняется быстро, особенно если обнаружатся повреждения, которые нужно устранить.

Особенности подачи тепла в многоквартирном доме, детали на видео:

Радиаторы для систем отопления многоэтажек

Привычными для многих жильцов многоэтажных домов являются чугунные радиаторы, которые ранее использовались не один десяток лет. При необходимости заменить такую отопительную батарею ее демонтируют и устанавливают аналогичную, которую требует система отопления в многоквартирном доме. Такие радиаторы для централизованных отопительных систем считаются лучшим решением, поскольку они без проблем выдерживают достаточно высокое давление. В паспорте к чугунной батарее указываются две цифры: первая из них говорит о рабочем давлении, а вторая обозначает испытательную (опрессовочную) нагрузку. Обычно это значения - 6/15 или 8/15.

Чем выше жилой дом, тем больше величина рабочего давления. В девятиэтажных зданиях оно достигает 6-ти атмосфер, таким образом, чугунные радиаторы для них подходят. Но когда это 22-этажный дом, то для рабочего функционирования централизованных систем отопления потребуется 15 атмосфер. В таком случае нужны стальные или биметаллические отопительные приборы.

Специалисты не рекомендуют использовать при централизованном отоплении алюминиевые радиаторы - они не способны выдержать рабочего состояния водяного контура. Также профессионалы советуют владельцам недвижимости при проведении капитального ремонта в квартирах в случае замены батарей менять трубы развода теплоносителей на ½ или ¾ дюйма. Обычно они находятся в плохом состоянии и вместо них желательно ставить изделия экопласт.

У некоторых видов радиаторов (стальных и биметаллических) водотоки уже, чем у чугунных изделий, поэтому они забиваются и в дальнейшем теряют мощность. Поэтому в месте подачи теплоносителя в батарею следует установить фильтр, который обычно монтируют перед водомером.

Иногда тепловые пункты еще называют тепловыми узлами. Это несколько устаревший термин, однако, он тоже имеет право на существование, так как довольно точно отображает суть и назначение комплекса, соединяющего тепловую сеть с потребителями, распределяющего теплоноситель, задающего и контролирующего режимы теплопотребления.

Несколько десятилетий назад под понятием тепловой узел подразумевали установку, размещенную в отдельном помещении и состоящую из трубопровода, запорной арматуры, приборов для измерения и контроля (манометров, термометров) и грязевиков – специальных устройств, служащих для очищения теплоносителя.

Со временем теплоэнергетическое оборудование совершенствовалось, повышались требования к нему, были введены новые нормативные документы и стандарты. Сегодня то, что раньше называлось теплоузлом, принято называть ИТП или индивидуальным тепловым пунктом. Вместе с термином поменялось и представление о составляющих его элементах.

В типовой современный ИТП входят узлы:

  • ввода тепловой сети, водоснабжения и электропитания;
  • регулировки параметров теплоснабжения и теплопотребления;
  • учета расхода тепловой энергии, автоматизации и КИП;
  • подключения вентиляционных систем;
  • подключения отопительных нагрузок (систем);
  • насосного, фильтрующего и теплообменного оборудования;
  • энергорезервирующие устройства систем отопления и вентиляции.

Проектирование тепловых узлов

Проектирование тепловых узлов является одной из начальных стадий строительства. Разработка проекта теплового узла необходима для согласования с теплоснабжающей организацией. На этом этапе производятся необходимые расчеты, осуществляется подбор оборудования, определяется объем монтажных работ.

Правильно и грамотно составленный проект теплового узла позволяет подсчитать расходы на строительство, избежать неоправданных затрат, решить множество задач в ходе дальнейшей эксплуатации. Более подробно об этом процессе описано в материале проектирование тепловых пунктов.


Современный тепловой узел – важнейший элемент теплосети, к которому предъявляются самые высокие требования. Грамотно выполненный монтаж тепловых узлов дает возможность долгое время сохранить их работоспособность и повысить надежность.

В наше время тепловые узлы кроме распределяющей функции проводят контроль расхода тепловой энергии, поэтому профессиональный и качественный монтаж ИТП (теплоузла) позволяет наладить бесперебойную и эффективную работу оборудования, а также обеспечивает точный учет и экономию энергетических ресурсов.

Обслуживание и ремонт теплового узла

Обслуживание теплового узла (обслуживание ИТП) представляет собой комплекс мероприятий, который обеспечивает бесперебойную работу оборудования, контроль за функционированием узлов и элементов объекта в процессе эксплуатации, проведение сезонных и пусконаладочных работ, организационно-правовое сопровождение техработ, проведение мелких ремонтных работ, проверку КИПиА.

Все работы по обслуживанию теплоузлов производятся согласно действующих нормативных документов (ПТЭ ТЭ). Ремонт тепловых узлов с заменой вышедших из строя агрегатов обычно производится специализированной организацией согласно дополнительного соглашения.

Стоимость теплового узла

Стоимость теплового узла (стоимость ИТП), как правило, состоит из следующих составляющих:

  • затрат, связанных с проектировочными и предварительными работами;
  • стоимости оборудования теплоузла;
  • стоимости монтажных работ;
  • транспортных и других расходов.

Стоимость проекта теплового узла

Стоимость проектирования теплового узла определяется обычно индивидуально в каждом конкретном случае и зависит от многих факторов: вида строящегося теплового узла; типа системы теплоснабжения; видов, марок, типов и количества оборудования; необходимой мощности теплоузла, объемов и сложности работ и других показателей.

Однако справедливо подмечено, что экономия начинается именно на этапе составления проекта. При профессионально и качественно выполненном проектировании высокая цена современного эффективного оборудования, стоимость проекта теплового узла, затраты на монтажные работы и другие расходы окупаются в самые короткие сроки.

Стоимость монтажа теплового узла

Работы по строительству (монтажу) теплоузла (теплопункта) состоят из нескольких этапов.

  1. Монтажные, сварочные и слесарные работы, включающие в себя установку арматуры, насосов, теплообменников, узла учета, прокладку трубопроводов.
  2. Электромонтажные работы – прокладка электропитающих кабелей, подключение электронагрузок (приборов учета, автоматики и контроля, насосов и другого электрооборудования).
  3. Пусконаладочные работы.
  4. Сдача теплоузла в эксплуатацию.

От объемов этих операций зависит общая стоимость монтажных работ. Исчерпывающую информация о стоимости монтажа теплового узла (пункта), его ремонта и другие данные можно найти на странице « ».

Обеспечение многоквартирных домов – процесс сложный и требующий профессионального подхода. Основная проблема состоит в протяженности тепловых магистралей в результате чего происходят большие тепловые потери. Решение этой проблемы может быть реализовано комплексно, а именно:

  1. Изоляция труб и применение новых материалов их изготовления.
  2. Увеличение температуры воды на выходе из котельной.

Для реализации второго метода используется принцип увеличения давления воды, вследствие чего температура кипения становится больше 100°С. Согласно этому существуют следующие температурные режимы работы котельных:

  • 150°С.
  • 130°С.
  • 95°С.

Это очень удобно для транспортировки, но существует необходимость снижения температуры при распределении теплоносителя в доме. Это возможно благодаря применению элеваторного теплового узла.

Самое очевидное решение – это уменьшить температуру с помощью смешивания остывшего теплоносителя из обратной трубы. Эту задачу выполняет элеваторный температурный узел.

Конструкция состоит из 3-х патрубков:

  1. Входной. В него поступает горячая вода из общей магистрали с повышенной температурой.
  2. Обратный. Подсоединен к обратному трубопроводу.
  3. Смесительный. Подает теплоноситель с нормальной температурой в отопительные приборы помещений.

Для обеспечения автономной работы в конструкции предусмотрен инжектор. Он необходим для уменьшения давления до нормально, но, помимо этого, выполняет очень важную функцию.

Перегретая вода поступает в сопло инжектора и попадает в зону смешивания с большой скоростью. При этом создается разряжение (зона уменьшенного давления), которое обеспечивает приток остывшего теплоносителя из обратной трубы.

Возникающее давление в элеваторном тепловом узле позволяет создавать постоянную скорость движения потока. Это в некоторой мере облегчает работу водяных насосов и способствует созданию одинакового температурного режима для всех потребителей, независимо от порядка подключения к отопительной системе.

Способы регулирования

Важным параметром в работе элеваторного узла является регулирование подачи перегретого теплоносителя. В зависимости о внешних факторов температура воды в обратной трубе может изменяться. На это влияет количество подключенных в данный момент пользователей, время года и состояние здания.

Для обеспечения оптимального температурного режима элеваторный узел в обязательном порядке должен комплектоваться температурными датчиками и приборами показания давления. Каждый такой набор должен устанавливаться на все три подключаемых патрубка.

Один из самых распространенных вариантов обвязки элеваторного узла показан ниже.

1 – , 2 – задвижка, 3 – кран пробковый, 4, 12 – грязевые уловители, 5 – клапан обратный, 6 – дроссельная шайба, 7 – штуцер, 8 – термометр, 9 – манометр, 10 – элеватор, 11 – тепломер, 13 – водомер, 14 – регулятор расхода воды, 15 – регулятор подпара, 16 – вентили, 17 – обводка.

Данная схема работает в ручном режиме. В конструкции элеватора предусмотрен регулировочный клапан, с помощью которого уменьшается (увеличивается) поток горячей воды.

Преимуществами данной системы являются:

  1. Ее функционирование возможно без подключения электроснабжения.
  2. Небольшая стоимость проектирования и установки.
  3. Надежность.

Недостатки:

  1. Отсутствует автоматический режим работы.
  2. Небольшая эффективность, так как температура теплоносителя на входе может измениться в любой момент, что сразу же скажется на нагреве жилых помещений.

Но в настоящее время есть автоматические системы, позволяющие поддерживать нужный температурный режим без участия человека.

Для этого используют распределительные клапаны с электроприводом и циркулярным насосом. Электропривод подключается к датчику температуры и при ее изменении смещает задвижку клапана. Насос же необходим для обеспечения циркуляции теплоносителя в системе.

Приветствую всех, кто читает мой блог! Сегодня я хочу предложить вам еще одну статью, которая посвящена отоплению. В этой статье я расскажу вам о странном месте в подвале вашего дома, которое называется тепловой пункт (или тепловой узел). Статья имеет своей целью дать вам общее представление о том, что такое тепловой узел, как он работает и зачем нужен. Разбираться в этих вопросах начнем с самого фундаментального из них.

Зачем нужен тепловой узел?

Тепловой пункт находится на вводе теплотрассы в дом. Главное его назначение — изменение параметров теплоносителя. Если говорить понятнее, то тепловой узел снижает температуру и давление теплоносителя перед тем как он попадет в ваш радиатор или конвектор. Нужно это не только для того, чтобы вы не обожглись от прикосновения к прибору отопления, но и для продления срока службы всего оборудования системы отопления. Особенно это важно, если внутри дома отопление разведено при помощи полипропиленовых или металлопластиковых труб. Существуют регламентированные режимы работы тепловых узлов:

  • 150/70
  • 130/70
  • 110/70

Эти цифры показывают максимальную и минимальную температуру теплоносителя в теплотрассе.

Также, по современным требованием на каждом тепловом узле должен быть установлен прибор учета тепла. Теперь перейдем к устройству тепловых узлов.

Как устроен тепловой узел?

Вообще, техническое устройство каждого теплового пункта проектируется отдельно в зависимости от конкретных требований заказчика. Существует несколько основных схем исполнения тепловых пунктов. Давайте рассмотрим их по очереди.

Тепловой узел на основе элеватора.

Схема теплового пункта на основе элеваторного узла является наиболее простой и дешевой. Главный ее недостаток — невозможность регулировать температуру теплоносителя в трубах. Это вызывает неудобства у конечного потребителя и большой перерасход тепловой энергии в случае оттепелей во время отопительного сезона. Давайте посмотрим ниже на рисунок и разберемся в том, как работает эта схема:

Кроме того, что указано выше, в составе теплового узла может быть редуктор понижения давления. Он устанавливается на подаче перед элеватором. Элеватор является главной деталью этой схемы, в которой осуществляется подмешивание остывшего теплоносителя из «обратки» к горячему теплоносителю из «подачи». Принцип работы элеватора основан на создании разряжения на его выходе. В результате этого разряжения, давление теплоносителя в элеваторе оказывается меньше, чем давление теплоносителя в «обратке» и происходит смешение.

Тепловой узел на основе теплообменника.

Тепловой пункт, подключенный через специальный теплообменник позволяет разделять теплоноситель из теплотрассы от теплоносителя внутри дома. Разделение теплоносителей позволяет производить его подготовку при помощи специальных присадок и фильтрации. При такой схеме появляются широкие возможности в регулировании давления и температуры теплоносителя внутри дома. Это позволяет снизить затраты на отопление. Для того, чтобы иметь наглядное представление о такой конструкции посмотрите ниже на рисунок.


Подмешивание теплоносителя в таких системах делается при помощи термостатических клапанов. В таких системах отопления в принципе можно применять алюминиевые радиаторы отопления, но долго они прослужат только при хорошем качестве теплоносителя. Если PH теплоносителя будет выходить за рамки одобренные производителем, то срок службы алюминиевых радиаторов может сильно сократиться. Качество теплоносителя вы контролировать не можете, поэтому лучше перестраховаться и установить биметаллические или чугунные радиаторы.

ГВС может быть подключена подобным образом через теплообменник. Это дает такие же преимущества по части регулирования температуры и давления горячей воды. Стоит сказать, что недобросовестные управляющие компании могут обманывать потребителей при помощи занижения температуры горячей воды на пару градусов. Для потребителя это почти не заметно, но в масштабах дома позволяет экономить десятки тысяч рублей в месяц.

Итоги статьи.

Тепловой узел представляет собой совокупность устройств и приборов, осуществляющих учет энергии, объема (массы) теплоносителя, а также регистрацию и контроль его параметров. Узел учета конструктивно представляет собой совокупность модулей (элементов), подключаемых к системе трубопроводов.

Назначение

Организуется узел учета тепловой энергии для следующих целей:

  • Контролирование рационального использования теплоносителя и тепловой энергии.
  • Контролирование тепловых и гидравлических режимов систем теплопотребления и теплоснабжения.
  • Документирование параметров теплоносителя: давления, температуры и объема (массы).
  • Осуществление взаимного финансового расчета между потребителем и организацией, занимающейся поставкой тепловой энергией.

Основные элементы

Тепловой узел состоит из комплекта устройств и приборов учета, которые обеспечивают выполнение как одной, так и одновременно нескольких функций: хранение, накопление, измерение, отображение информации о массе (объеме), количестве тепловой энергии, давлении, температуре циркулирующей жидкости, а также времени работы.

Как правило, в качестве прибора учета выступает теплосчетчик, в состав которого входит термопреобразователь сопротивлений, тепловычислитель и первичный преобразователь расхода. Дополнительно теплосчетчик может комплектоваться фильтрами и датчиками давления (в зависимости от модели первичного преобразователя). В теплосчетчиках могут использоваться первичные преобразователи со следующими вариантами измерения: вихревое, ультразвуковое, электромагнитное и тахометрическое.

Устройство узла учета

Состоит узел учета тепловой энергии из следующих основных элементов:

  • Запорная арматура.
  • Теплосчетчик.
  • Термопреобразователь.
  • Грязевик.
  • Расходомер.
  • Термодатчик обратного трубопровода.
  • Дополнительное оборудование.

Тепловой счетчик

Теплосчетчик - это основной элемент, из которого должен состоять узел тепловой энергии. Его устанавливают на вводе тепла в отопительную систему в непосредственной близости к границе балансовой принадлежности тепловой сети.

При удаленном монтаже от данной границы, дополнительно к показаниям по счетчику добавляют потери (для учета тепла, которое выделяется поверхностью трубопроводов на участке от границы балансового разделения до теплосчетчика).

Функции теплосчетчика

Прибор любого типа должен выполнять следующие задачи:

1. Автоматическое измерение:

  • Продолжительности работы в зоне ошибок.
  • Времени наработки при поданном напряжении питания.
  • Избыточного давления циркулирующей в системе трубопроводов жидкости.
  • Температуры воды в трубопроводах систем горячего, холодного водоснабжения и теплоснабжения.
  • Расхода теплоносителя в трубопроводах и теплоснабжения.

2. Вычисление:

  • Потребленного количества тепла.
  • Объема теплоносителя, протекающего по трубопроводам.
  • Тепловой потребляемой мощности.
  • Разности температуры циркулирующей жидкости в подающем и обратном трубопроводе (трубопроводе холодного водоснабжения).

Запорная арматура и грязевик

Запорные устройства отсекают систему отопления дома от тепловой сети. Грязевик при этом обеспечивает защиту элементов теплосчетчика и тепловой сети от грязи, которая присутствует в теплоносителе.

Термопреобразователь

Данный прибор устанавливается после грязевика и запорной арматуры в наполненную маслом гильзу. Гильза либо посредством резьбового соединения закрепляется на трубопроводе, либо вваривается в него.

Расходомер

Расходомер, установленный в тепловой узел, выполняет функцию преобразователя расхода. На участке измерения (до и после расходомера) рекомендуется устанавливать специальные задвижки, благодаря которым будет упрощено проведение сервисных и ремонтных работ.

Поступив в подающий трубопровод, теплоноситель направляется в расходомер, а затем уходит в отопительную систему дома. Далее охлажденная жидкость возвращается в обратном направлении по трубопроводу.

Термодатчик

Данное устройство монтируется на обратном трубопроводе совместно с запорной арматурой и расходомером. Такое расположение позволяет не только измерять температуру циркулирующей жидкости, но и ее расход на входе и выходе.

Расходомеры и термодатчики подключаются к теплосчетчикам, которые позволяют производить расчет потребленного тепла, хранение и архивацию данных, регистрацию параметров, а также их визуальное отображение.

Как правило, тепловычислитель размещается в отдельном шкафу со свободным доступом. Кроме того, в шкафу можно устанавливать дополнительные элементы: источник бесперебойного питания или модем. Дополнительные устройства позволяют обрабатывать и контролировать данные, которые передаются узлом учета дистанционно.

Основные схемы систем отопления

Итак, прежде чем рассмотреть схемы тепловых узлов, необходимо рассмотреть, какими бывают схемы отопительных систем. Среди них наиболее популярной считается конструкция верхней разводки, при которой теплоноситель протекает по главному стояку и направляется в магистральный трубопровод верхней разводки. В большинстве случаев главный стояк располагается в помещении чердака, откуда идет его разветвление на второстепенные стояки и после чего распределяется по нагревательным элементам. Подобную схему целесообразно использовать в одноэтажных строениях с целью экономии свободного пространства.

Также существуют схемы отопительных систем с нижней разводкой. В таком случае тепловой узел располагается в помещении подвала, откуда выходит с теплой водой. Стоит обратить внимание, что, независимо от типа схемы, на чердаке здания рекомендуется располагать еще и расширительный бачок.

Схемы тепловых узлов

Если говорить о схемах тепловых пунктов, следует отметить, что самыми распространенными являются следующие типы:

  • Тепловой узел - схема с параллельным одноступенчатым подключением горячей воды. Эта схема является наиболее распространенной и простой. В таком случае горячее водоснабжение подключается параллельно к той же сети, что и отопительная система здания. Теплоноситель подается в подогреватель из наружной сети, затем охлажденная жидкость в обратном порядке перетекает непосредственно в теплопровод. Главным недостатком такой системы, по сравнению с другими типами, является большой расход сетевой воды, который используется для организации горячего водоснабжения.

  • Схема теплового пункта с последовательным двухступенчатым подключением горячей воды. Данную схему можно разделить на две ступени. Первая ступень отвечает за обратный трубопровод отопительной системы, вторая - за подающий трубопровод. Основным преимуществом, которым обладают тепловые узлы, подключенные по такой схеме, является отсутствие специальной подачи сетевой воды, что существенно сокращает ее расход. Что же касается недостатков - это потребность в монтаже системы автоматического регулирования для настройки и корректировки распределения тепла. Такое подключение рекомендуется использовать в случае отношения максимального расхода тепла на отопление и горячее водоснабжение, находящегося в интервале от 0,2 до 1.

  • Тепловой узел - схема со смешанным двухступенчатым подключением подогревателя горячей воды. Это наиболее универсальная и гибкая в настройках схема подключения. Ее можно использовать не только для нормального температурного графика, но и для повышенного. Основной отличительной особенностью стоит назвать тот момент, что подключение теплообменника к подающему трубопроводу осуществляется не параллельно, а последовательно. Дальнейший принцип строения подобен второй схеме теплового пункта. Тепловые узлы, подключенные по третьей схеме, нуждаются в дополнительном потреблении сетевой воды для подогревательного элемента.

Порядок установки узла учета

Прежде чем установить узел учета тепловой энергии, важно провести обследование объекта и разработать проектную документацию. Специалисты, которые занимаются проектированием отопительных систем, производят все необходимые расчеты, осуществляют подбор контрольно-измерительных приборов, оборудования и подходящего теплового счетчика.

После документации, необходимо получить согласование от организации, которая занимается поставкой тепловой энергии. Этого требуют действующие правила учета тепловой энергии и нормы проектирования.

Только после согласования можно спокойно устанавливать тепловые узлы учета. Монтаж состоит из врезки запорных устройств, модулей в трубопроводы и электромонтажных работ. Работы по электромонтажу завершаются подключением к вычислителю датчиков, расходомеров и последующим запуском вычислителя для проведения учета энергии тепла.

После этого осуществляется учета тепловой энергии, заключающаяся в проверке работоспособности системы и программировании вычислителя, а затем производится сдача объекта согласующим сторонам на коммерческий учет, который выполняется специальной комиссией в лице теплоснабжающей компании. Стоит отметить, что такой узел учета должен функционировать некоторое время, которое у разных организаций колеблется от 72 часов до 7 дней.

Чтобы объединить несколько узлов учета в единую сеть диспетчеризации, потребуется организовать дистанционное снятие и мониторинг учета информации с теплосчетчиков.

Допуск к эксплуатации

При допуске теплового узла к эксплуатации проверяется соответствие заводского номера прибора учета, который указан в его паспорте и диапазона измерений установленных параметров теплосчетчика диапазону измеряемых показаний, а также наличие пломб и качество монтажа.

Эксплуатация теплового узла запрещена в следующих ситуациях:

  • Наличие врезок в трубопроводы, которые не предусмотрены проектной документацией.
  • Работа прибора учета за пределами норм точности.
  • Присутствие механических повреждений на приборе и его элементах.
  • Нарушение пломб на устройстве.
  • Несанкционированное вмешательство в работу теплового узла.
Loading...Loading...