Первые Дирижабли — Кто придумал? Дирижабль.

24 сентября 1852 г. француз Анри Жиффар поднялся в воздух на наполненном водородом управляемом дирижабле с механическим двигателем. Ему удалось достичь высо ты 1800 м и скорости около 10 км/ч. Пропеллер дирижабля вращала паровая машина.

Граф и его цеппелин

Полет прошел успешно, но паровая машина в качестве двигателя не давала серьезных преимуществ.

В дальнейшем предпринимались попытки с электрическими и дизельными моторами. Совершить прорыв в этой области удалось графу Фердинанду фон Цеппелину. Его дирижабль жесткой конструкции поднялся в воздух около г. Манцеля на Боденском озере 2 июля 1900 г. LZ-1, разработанный совместно с Теодором Кобером, имел 128 м в длину. Диаметр цилиодрической тканевой оболочки на алюминиевом каркасе составлял 11,7 м. Два бензиновых мотора мощностью по 14 лошадиных сил позволяли «летучей сигаре» развивать скорость до 28 км/ч.

Несмотря на несколько неудач со следующими моделями дирижаблей, в 1908 г. во Фридрихсхафене был построен завод Цеппелин. С 19Ю г. начались регулярные пассажирские перевозки на цеппелинах. Во время Первой мировой войны они использовались также для воздушных налетов на Англию. Первые попытки были успешными, но вскоре стала ясна непригодность дирижаблей в военных целях: горючий водород, наполнявший оболочку, делал их легкой добычей неприятеля.

Летающие отели-люкс Самым большим вызовом для пионеров воздухоплавания 1920-х гг. был перелет через Атлантику. В октябре 1924 г. Хуго Эккенеру впервые удалось пересечь на цеппелине Атлантический океан. LZ-126, заполненный 70 000 м3 водорода, за 70 часов достиг Нью-Йорка. С 1932 г. открылось пассажирское и грузовое сообщение на дирижаблях между Франкфуртом и Рио-де-Жанейро, а также Франкфуртом и местечком Лейкхерст под Нью-Йорком. У богачей такие путешествия вошли в моду, и новые модели все более впечатляющих размеров напоминали внутри отели высшего класса.

«Гинденбург»

В1934 г. началось сооружение цеппелина «Гинденбург», самого крупного из когда-либо строившихся воздушных кораблей. Он имел 245 м в длину и развивал с помощью дизельных моторов мощностьюв 1100 лошадиных сил скорость до 135 км/ч. При двадцатом трансатлантическом перелете 6 мая 1937 г. на подлете к Лейкхерсту произошел взрыв. 36 человек погибли в огне. Этой катаарофой закончилась эпоха гигантских дирижаблей.

  • 1784 г.: Жан-Батист Менье опубликовал проект воздушного корабля с винтом.
  • 1872 г.: Пауль Хенлейн использовал в своем дирижабле газовый двигатель.
  • 1898 г.: дирижабль нежесткой конструкции №1» Альберто Сантоса-Дюмона с бензиновым двигателем.
  • 1997 г.: цеппелин «NT» отправился в свой первый полет с исторической площадки во Фридрихсхафене.

Однажды отказавшись от дирижаблей, в наши дни человечество находит в этих летательных аппаратов все больше плюсов и выгод. Но вид могучего корабля, проплывающего по небу, настолько притягивает к себе, что уже ради этого величественного зрелища хочется, чтобы они вернулись…

Как правило, статьи о современных дирижаблях начинаются с воспоминаний о том, как почти 70 лет назад на американской авиабазе Лейкхерст погиб в огне гигантский немецкий цеппелин «Гинденбург», а три года спустя Герман Геринг приказал разобрать оставшиеся дирижабли на металлолом и подорвать ангары. Эпоха дирижаблей тогда закончилась, пишут обычно журналисты, но вот теперь интерес к управляемым аэростатам снова активно возрождается. Однако подавляющее большинство наших сограждан если где и видят «возродившиеся» дирижабли, то только на разного рода аэрошоу — там они обычно применяются в качестве оригинальных рекламных носителей. Неужели это все, на что способны эти удивительные воздушные корабли? Чтобы выяснить, кому и зачем нужны сегодня дирижабли, пришлось обратиться к специалистам, строящим дирижабли в России.


Плюсы и минусы

Дирижабль — это управляемый самодвижущийся аэростат. В отличие от обычного воздушного «шара, который летит» исключительно по направлению ветра и может маневрировать только по высоте в попытке поймать ветер нужного направления, дирижабль способен двигаться относительно окружающих воздушных масс в направлении, выбранном пилотом. Для этой цели летательный аппарат оснащен одним или несколькими двигателями, стабилизаторами и рулями, а также имеет аэродинамическую («сигарообразную») форму. В свое время дирижабли «убила» не столько череда ужаснувших мир катастроф, сколько авиация, развивавшаяся в первой половине ХХ века сверхбыстрыми темпами. Дирижабль тихоходен — даже самолет с поршневыми двигателями летает быстрее. Что уж говорить о турбовинтовых и реактивных машинах. Разгонять дирижабль до самолетных скоростей мешает большая парусность корпуса — сопротивление воздуха слишком велико. Правда, время от времени говорят о проектах сверхвысотных дирижаблей, которые поднимутся туда, где воздух сильно разрежен, а значит, и сопротивление его значительно меньше. Это якобы позволит развивать скорость в несколько сотен километров в час. Однако пока подобные проекты проработаны только на уровне концепции.


17 августа 2006 года пилот Станислав Федоров достиг на тепловом дирижабле российского производства «АвгурЪ» AU-35 («Полярный гусь») высоты 8180 метров. Так был побит мировой рекорд, продержавшийся 90 лет и принадлежавший немецкому дирижаблю Zeppelin L-55. Рекорд «Полярного гуся» стал первым шагом в выполнении программы «Высокий старт» — проекта Русского Воздухоплавательного Общества и Группы компаний «Метрополь» по запуску лёгких космических аппаратов с высотных дирижаблей. В случае успеха этого проекта, в России будет создан передовой аэростатно-космический комплекс, способный экономично выводить на орбиту частные спутники весом до 10−15 килограммов. Одно из предполагаемых направлений использования комплекса «Высокий старт» — запуск геофизических ракет для исследования приполярных областей Северного Ледовитого океана.

Проигрывая авиации в скорости, управляемые аэростаты при этом имеют ряд важных преимуществ, благодаря которым, собственно, возрождается дирижаблестроение. Во‑первых, сила, которая поднимает аэростат в воздух (известная всем со школьной скамьи сила Архимеда), совершенно бесплатна и не требует затрат энергии, в отличие от подъемной силы крыла, которая напрямую зависит от скорости аппарата, а значит, от мощности двигателя. Дирижаблю же двигатели нужны в основном для перемещения в горизонтальной плоскости и маневрирования. Поэтому летательные аппараты такого типа могут обходиться моторами значительно меньшей мощности, чем потребовались бы самолету при равной величине полезной нагрузки. Отсюда, а это уже во‑вторых, вытекает большая по сравнению с крылатой авиацией экологическая чистота дирижаблей, что в наше время чрезвычайно важно.

Третий плюс дирижаблей — их практически неограниченная грузоподъемность. Создание сверхгрузоподъемных самолетов и вертолетов имеет ограничения по прочностным характеристикам конструкционных материалов. Для дирижаблей же таких ограничений нет, и воздушный корабль с полезной нагрузкой, например, 1000 т — вовсе не фантастика. Добавим сюда возможность длительное время находиться в воздухе, отсутствие необходимости в аэродромах с длинными взлетно-посадочными полосами и большую безопасность полетов — и у нас получится внушительный список достоинств, которые вполне уравновешивают тихоходность. Впрочем, и тихоходность, как выяснилось, можно скорее отнести к достоинствам воздушных кораблей. Но об этом чуть позже.


В дирижаблестроении выделяются три основные типа конструкции: мягкая, жесткая и полужесткая. Практически все современные дирижабли относятся к мягкому типу. В англоязычной литературе их обозначают термином «blimp». Во время Второй мировой войны американская армия активно использовала «блимпы» для наблюдения за прибрежными водами и конвоирования судов. Дирижабли с жестким каркасом часто называют «цеппелинами» в честь изобретателя этой конструкции графа Фридриха фон Цеппелина (1838 — 1917).

Конкурент вертолета

Наша страна — один из мировых центров возрождающегося дирижаблестроения. Лидер отрасли — группа компаний «Росаэросистемы». Побеседовав с ее вице-президентом Михаилом Талесниковым, мы выяснили, как устроены современные российские дирижабли, где и как они используются и что нас ждет впереди.


Сегодня в работе находятся два типа дирижаблей, созданных конструкторами «Росаэросистем». Первый тип — это двухместный дирижабль AU-12 (длина оболочки 34 м). Аппараты такой модели существуют в трех экземплярах, и два из них время от времени используются московской милицией для патрулирования МКАД. Третий дирижабль продан в Таиланд и применяется там в качестве рекламного носителя.


Дирижабли полужёсткого типа отличаются наличием в нижней части оболочки, как правило, металлической фермы, препятствующей деформации оболочки, однако, как и в мягкой конструкции, форма оболочки поддерживается давлением подъемного газа. К полужесткому типу относятся современные немецкие дирижабли «Zeppelin NT», имеющие внутри оболочки поддерживающий каркас из углепластика.

Гораздо более интересная работа у дирижаблей системы AU-30. Аппараты этой модели отличаются более крупными габаритами (длина оболочки 54 м) и, соответственно, большей грузоподъемностью. Гондола AU-30 способна вместить десять человек (двух пилотов и восемь пассажиров). Как рассказал нам Михаил Талесников, в настоящее время ведутся переговоры с заинтересованными сторонами о возможности организации элитных воздушных туров. Полет на небольшой высоте и на малой скорости (вот оно — преимущество тихоходности!) над красивыми природными ландшафтами или памятниками архитектуры и в самом деле сможет стать незабываемым приключением. Подобные туры проходят в Германии: дирижабли возрожденной марки Zeppelin NT катают туристов над живописным озером Бодензее, в тех самых краях, где когда-то отправился в полет первый немецкий дирижабль. Однако российские дирижаблестроители уверены, что главное предназначение их аппаратов не реклама и развлечения, а выполнение серьезных задач промышленного характера.


Вот пример. Энергетические компании, имеющие в своем распоряжении линии электропередач, должны регулярно проводить мониторинг и диагностику состояния своих сетей. Удобнее всего это делать с воздуха. В большинстве стран мира для такого мониторинга применяются вертолеты, однако у винтокрылой машины есть серьезные недостатки. Помимо того что вертолет неэкономичен, у него еще и весьма скромный радиус действия — всего 150−200 км. Понятно, что для нашей страны с ее многотысячекилометровыми расстояниями и обширным энергетическим хозяйством это слишком мало. Есть и еще одна проблема: вертолет в полете испытывает сильную вибрацию, в результате чего чувствительное сканирующее оборудование дает сбои. Движущийся медленно и плавно дирижабль, способный преодолевать тысячи километров на одной заправке, напротив, идеально подходит для задач мониторинга. В настоящий момент одна из российских фирм, разработавших основанное на лазерных технологиях сканирующее оборудование, а также программное обеспечение к нему, использует два дирижабля AU-30 для оказания услуг энергетикам. Дирижабль этого типа может применяться и для разнообразных видов мониторинга земной поверхности (в том числе в военных целях), а также для картографирования.


Многоцелевой дирижабль Au-30 (многоцелевой патрульный дирижабль объемом более 3000 куб. метров) предназначен для выполнения полетов в течение продолжительного времени, в том числе на малой высоте и с малой скоростью. Крейсерсакая скорость 0−90 км/ч // Мощность маршевого двигателя 2х170 л.с. // Максимальная дальность полета 3000 км // Максимальная высота полета 2500 м.

Как они летают?

Практически все современные дирижабли, в отличие от цеппелинов довоенной эпохи, относятся к мягкому типу, то есть форма их оболочки поддерживается изнутри давлением подъемного газа (гелия). Объясняется это просто — для аппаратов сравнительно небольших размеров жесткая конструкция неэффективна и уменьшает полезную нагрузку из-за веса каркаса.

Несмотря на то что дирижабли и аэростаты относят к классу аппаратов легче воздуха, многие из них, особенно при полной загрузке, имеют так называемый перетяж, то есть превращаются в аппараты тяжелее воздуха. Это относится и к AU-12 и AU-30. Выше мы уже говорили о том, что дирижаблю, в отличие от самолета, двигатели нужны в основном для горизонтального полета и маневрирования. И вот почему «в основном». «Перетяж», то есть разница между силой земного притяжения и архимедовой силой, компенсируется за счет небольшой подъемной силы, которая появляется, когда встречный поток воздуха набегает на имеющую специальную аэродинамическую форму оболочку дирижабля — в данном случае она работает как крыло. Стоит дирижаблю остановиться — и он начнет опускаться к земле, ведь архимедова сила не полностью компенсирует силу притяжения.


Двухместный дирижабль АU-12 предназначен для подготовки пилотов воздухоплавателей, патрулирования и визуального контроля автодорог и городских территорий в интересах экологического мониторинга и ГАИ, контроля за чрезвычайными ситуациями и спасательных операций, охраны и наблюдения, рекламных полетов, качественной фото, кино, теле- и видеосъемки в интересах рекламы, телевидения, картографии. 28 ноября 2006 г. впервые в истории Российского воздухоплавания AU-12 был выдан сертификат типа на двухместный дирижабль. Крейсерская скорость 50 — 90 км/ч // Мощность маршевого двигателя 100 л.с. // Максимальная дальность полета 350 км // Максимальная высота полета 1500 м.

Дирижабли AU-12 и AU-30 имеют два режима взлета: вертикальный и с небольшим пробегом. В первом случае два винтовых двигателя с переменным вектором тяги переходят в вертикальное положение и таким образом отталкивают аппарат от земли. После набора небольшой высоты они переходят в горизонтальное положение и толкают дирижабль вперед, в результате чего возникает подъемная сила. При посадке двигатели вновь переходят в вертикальное положение и включаются на реверсивный режим. Теперь дирижабль, напротив, притягивается к земле. Такая схема позволяет преодолеть одну из главных проблем эксплуатации дирижаблей в прошлом — сложность со своевременной остановкой и точным причаливанием аппарата. Во времена могучих цеппелинов их приходилось буквально отлавливать за спущенные вниз тросы и закреплять у земли. Причаливающие команды насчитывали в те времена десятки и даже сотни человек.

При взлете с пробегом двигатели изначально работают в горизонтальном положении. Они разгоняют аппарат до возникновения достаточной подъемной силы, после чего дирижабль поднимается в воздух.


«Небесная яхта» ML866 Aeroscraft Интересные проекты дирижаблей нового поколения разрабатываются на североамериканском континенте. Создать «небесную супер-яхту» ML 866 намерена в недалеком корпорация Wordwide Aeros. Этот дирижабль сконструирован по гибридной схеме: в полете около 2/3 веса машины будут компенсироваться архимедовой силы, а подниматься вверх аппарат будет благодаря подъемной силе, возникающей при обтекании набегающим потоком воздуха оболочки корабля. Для этого оболочке будет придана специальная аэродинамическая форма. Официально ML 866 предназначен для VIP-туризма, однако, если учесть, что Wordwide Aeros получает финансирование в частности от государственного агентства DARPA, занимающегося оборонными технологиями, не исключено использование дирижаблей в военных целях, например для наблюдения или связи. А канадская компания Skyhook совместно с Boeing объявила о проекте JHL-40 — грузового дирижабля с полезной нагрузкой 40 т. Это тоже «гибрид», однако здесь архимедова сила будет дополняться тягой четырех роторов, создающих тягу по вертикальной оси.

Маневрирование по высоте и управление подъемной силой пилот осуществляет, в частности, меняя тангаж (угол наклона горизонтальной оси) дирижабля. Этого можно добиться как с помощью закрепленных на стабилизаторах аэродинамических рулей, так и путем изменения центровки аппарата. Внутри оболочки, накачанной находящимся под небольшим давлением гелием, находятся два баллонета. Баллонеты — это мешки из воздухонепроницаемой материи, в которые нагнетается забортный воздух. Управляя объемом баллонета, пилот изменяет давление подъемного газа. Если баллонет раздувается, гелий сжимается и плотность его растет. При этом архимедова сила падает, что приводит к снижению дирижабля. И наоборот. При необходимости можно перекачивать воздух, например, из носового баллонета в кормовой. Тогда при изменении центровки угол тангажа примет положительное значение, а дирижабль перейдет в кабрирующее положение.

Нетрудно заметить, что современный дирижабль имеет довольно сложную систему управления, предусматривающую работу рулями, варьирование режима и вектора тяги двигателей, а также изменение центровки аппарата и величины давления подъемного газа с помощью баллонетов.


Тяжелее и выше

Еще одно направление, в котором работают отечественные дирижаблестроители, — это создание тяжелых грузопассажирских дирижаблей. Как уже говорилось, для дирижаблей ограничений по грузоподъемности практически не существует, а потому в перспективе могут быть созданы настоящие «воздушные баржи», которые будут способны перевозить по воздуху почти все что угодно, включая сверхтяжелые негабаритные грузы. Задача упрощается тем, что при изменении линейных габаритов оболочки грузоподъемность дирижабля вырастает в кубической пропорции. К примеру, AU-30, имеющий оболочку длиной 54 м, может брать на борт до 1,5 т полезного груза. Дирижабль нового поколения, разрабатываемый сейчас инженерами «Росаэросистем», при длине оболочки всего на 30 м больше возьмет полезную нагрузку 16 т! В перспективных планах группы компаний — строительство дирижаблей с полезной нагрузкой 60 и 200 т. Причем именно в этом сегменте дирижаблестроения должна произойти маленькая революция. Впервые за многие десятилетия в воздух поднимется дирижабль, выполненный по жесткой схеме. Подъемный газ будет помещаться в мягких баллонах, жестко прикрепленных к каркасу, укрытому сверху аэродинамической оболочкой. Жесткий каркас добавит дирижаблю безопасности, так как даже в случае серьезной утечки гелия аппарат не утратит аэродинамическую форму.

Гибель гигантов

История воздушных катастроф с большим количеством жертв берет свое начало в эпохе дирижаблей. Британский дирижабль R101 отправился в свой первый полет в 5 октября 1930 года. На борту он нес государственную делегацию во главе с министром воздушного сообщения Кристофером Бёрдвеллом Лордом Томпсоном. Через несколько часов после старта R101 снизился до опасной высоты, врезался в холм и сгорел. Причиной катастрофы стали просчеты в проектировании. Из 54 пассажиров и членов экипажа погибли 48, включая министра. 73 американских военных моряка погибли, когда попавший в бурю дирижабль «Акрон» упал в море, неподалеку от побережья штата Нью-Джерси. Случилось это 3 апреля 1933 года. Людей убил не удар при падении, а ледяная вода: на дирижабле не было ни одной спасательной лодки и лишь несколько пробковых жилетов. Оба погибших дирижабля были накачаны взрывоопасным водородом. Гелиевые дирижабли значительно безопаснее.

Другой интересный проект, по которому в группе компаний «Росаэросистемы» уже проведены НИОКР, — это геостационарный стратосферный дирижабль «Беркут». В основе идеи — свойства атмосферы. Дело в том, что на высоте 20−22 км ветровой напор относительно невелик, причем ветер имеет постоянное направление — против вращения Земли. В таких условиях довольно легко с помощью тяги двигателей зафиксировать аппарат в одной точке относительно поверхности планеты. Стратосферный геостационар можно использовать практически во всех областях, в которых сейчас применяются геостационарные спутники (связь, передача теле- и радиопрограмм и т. д.). При этом дирижабль «Беркут» будет, разумеется, существенно дешевле любого космического аппарата. Кроме того, если спутник связи выходит из строя, ремонту он уже не подлежит. «Беркут» же в случае любых неполадок всегда можно будет спустить на землю, чтобы провести необходимую профилактику и ремонт. И наконец, «Беркут» — это абсолютно экологически чистый аппарат. Энергию для двигателей и ретранслирующей аппаратуры дирижабль возьмет от солнечных батарей, размещенных на верхней части оболочки. В ночное время питание будет производиться за счет аккумуляторов, накопивших электричество в течение дня.


Дирижабль «Беркут» Внутри оболочки «Беркута» — пять тканых емкостей с гелием. У поверхности земли закачанный в оболочку воздух будет сдавливать емкости, повышая плотность подъемного газа. В стратосфере, когда «Беркут» окажется в окружении разреженного воздуха, воздух из оболочки будет откачан, и емкости под давлением гелия раздуются. В результате плотность его упадет и, соответственно, возрастет архимедова сила, которая будет удерживать аппарат на высоте. «Беркут» разработан в трех модификациях — для высоких широт (HL), для средних широт (ML), для экваториальных широт (ET). Геостационарные характеристики дирижабля позволяют осуществлять функции наблюдения, связи и передачи данных над территорией, площадью более 1 млн км 2 .

Еще ближе к космосу

Все дирижабли, о которых шла речь в этой статье, относятся к газовому типу. Однако существуют еще и тепловые дирижабли — фактически управляемые монгольфьеры, в которых подъемным газом служит нагретый воздух. Они считаются менее функциональными, чем их газовые собратья, в основном из-за более низкой скорости и худшей управляемости. Основная сфера применения тепловых дирижаблей — аэрошоу и спорт. И именно в спорте России принадлежит высшее достижение.


17 августа 2006 года пилот Станислав Федоров достиг на тепловом дирижабле российского производства «Полярный гусь» высоты 8180 м. Однако и спортивным дирижаблям, возможно, будет найдено практическое применение. «Полярный гусь», поднявшись на высоту 10−15 км, сможет стать своего рода первой ступенью системы космических запусков. Известно, что при космических стартах значительное количество энергии тратится именно на начальной стадии подъема. Чем дальше от центра Земли находится стартовая площадка, тем больше экономия топлива и тем большую полезную нагрузку удается вывести на орбиту. Именно поэтому космодромы стараются размещать ближе к экваториальной области, чтобы выиграть (за счет приплюснутой формы Земли) несколько километров.


10 сентября 1908 года впервые был осуществлен полет первого управляемого аэростата, созданного в России.



Вопросами управляемого воздухоплавания в России начали заниматься в самом начале XIX века. Так, в 1812 году механик Франц Леппих предложил русскому правительству построить управляемый аэростат для военного применения. В июле того же года под Москвой началась сборка аппарата. Аэростат имел необычную конструкцию. Его мягкая рыбообразной формы оболочка выполнялась из тафты и по периметру в горизонтальной плоскости была опоясана жестким обручем. К этому обручу крепилась сеть, охватывавшая верхнюю часть оболочки. Самым необычным элементом конструкции являлся жесткий киль, укрепленный на обруче на некотором расстоянии от оболочки с помощью ряда подкосов, расположенных вокруг нижней части оболочки. Киль выполнял одновременно и функцию гондолы. В кормовой части оболочки к обручу был присоединен стабилизатор. По обеим сторонам аппарата к каркасу шарнирно крепились два крыла. Посредством взмахов этих крыльев предполагалось перемещать аэростат. Все элементы жесткого каркаса были выполнены из дерева. По ориентировочным оценкам объем оболочки аппарата составлял 8000 куб.м, длина - 57 м, а максимальный диаметр - 16 м. Но постройка этого необычного аэростата невиданных по своему времени размеров так и не была завершена. Оболочка, заполнявшаяся водородом, не держала газ, а с помощью крыльев-движителей перемещать аппарат было практически невозможно. Для управляемого перемещения такого крупного аэростата нужен был воздушный винт, приводимый в движение достаточно легким двигателем мощностью в несколько десятков киловатт. Создание такого двигателя являлось в то время неразрешимой задачей.


Тем не менее нельзя не отметить оригинальность конструкции этого аппарата, явившегося практически первым прообразом управляемых аэростатов полужесткого типа.


В середине XIX века ряд проектов управляемых аэростатов предлагают А. Снегирев (1841 г.), Н. Архангельский (1847 г.), М. И. Иванин (1850 г.), Д. Черносвитов (1857 г.). В 1849 году оригинальный проект выдвинул военный инженер Третесский. Дирижабль должен был передвигаться посредством реактивной силы струи газа, вытекавшего из отверстия в кормовой части оболочки. Для повышения надежности оболочка выполнялась секционированной.


В 1856 году проект управляемого аэростата разработал капитан первого ранга Н. М. Соковнин. Длина, ширина и высота этого аппарата составляли соответственно 50, 25 и 42 м, расчетная подъемная сила оценивалась в 25000 Н. С целью повышения безопасности оболочку предполагалось наполнять негорючим аммиаком. Для передвижения аэростата Соковнин спроектировал своего рода реактивный двигатель. Воздух, находившийся в баллонах под большим давлением, подавался в специальные трубы, из которых истекал наружу. Трубы предлагалось выполнить поворотными, что позволило бы, по утверждению автора, управлять аппаратом без помощи аэродинамических рулей. По сути, Соковнин впервые предложил струйную систему управления дирижаблем.


Наиболее законченный проект был предложен в 1880 году капитаном О.С. Костовичем. Его управляемый аэростат, названный «Россия», дорабатывался в течение нескольких лет. В окончательном варианте его основой служил жесткий цилиндрический каркас с коническими законцовками, выполненный из легкого и достаточно прочного материала «арборита» (типа фанеры), технология изготовления которого была разработана самим Костовичем. Каркас обтягивался шелковой материей, пропитанной для уменьшения газопроницаемости специальным составом. По бокам аэростата имелись несущие поверхности. По его оси проходила горизонтальная балка, в кормовой части которой был установлен четырехлопастный воздушный винт. Спереди к балке крепился руль направления. Для управления дирижаблем в вертикальной плоскости служил подвешенный снизу подвижный груз. В миделевом сечении оболочки размещалась вертикальная труба, к нижней части которой была присоединена гондола. Объем оболочки составлял около 5 000 м3, длина - около 60 м, а максимальный диаметр - 12 м. Для своего дирижабля Костович разработал удивительно легкий для того времени восьмицилиндровый двигатель внутреннего сгорания. При мощности 59 кВт его масса составляла лишь 240 кг.


В 1889 году практически все детали аэростата, в том числе и двигатель, были изготовлены. Однако из-за отсутствия субсидий со стороны правительства его так и не удалось собрать. И все же этот проект дирижабля жесткой системы был серьезным шагом вперед на пути развития управляемого воздухоплавания, сделанным почти на два десятилетия раньше появления аппаратов Шварца и Цеппелина.


Следует отметить также работы доктора медицины К. Данилевского из Харькова, построившего в 1897-1898 годах несколько небольших аэростатов, снабженных специальной системой поворотных плоскостей. Передвижение аппаратов в вертикальной плоскости осуществлялось посредством горизонтально расположенных винтов, приводившихся в движение мускульной силой человека с помощью педалей. Горизонтальное перемещение обеспечивалось в процессе подъема и спуска поворотом плоскостей в ту или иную сторону. Реального применения такие аппараты найти не могли, однако техническая идея управления полетом была оригинальной.



Таким образом, к концу XIX века в России управляемый аэростат так и не был построен.


Однако развернувшееся в начале XX века широкое строительство управляемых аэростатов за рубежом, в частности в Германии, Франции и Италии, и значительные по тому времени достижения этих дирижаблей, которые могли играть немаловажную роль при проведении боевых действий, заставили русское военное министерство серьезно заняться вопросом снабжения армии управляемыми аэростатами.


Первая попытка создания своими силами дирижабля была сделана в Учебном воздухоплавательном парке в 1908 году. Аэростат, названный «Учебный», строился по проекту капитана А. И. Шабского. Постройка аппарата была закончена в сентябре 1908 года и уже 10 числа этого же месяца над Волковом Полем вблизи Царского села был осуществлен его первый запуск. Оболочка аэростата имела объем около 1200 куб.м и была выполнена из двух змейковых аэростатов системы Парсеваля. Длина ее составляла 40 м, а максимальный диаметр - 6,55 м. В деревянной гондоле был установлен двигатель мощностью 11,8 кВт, который приводил в движение два воздушных винта. Винты располагались по обе стороны гондолы в передней ее части. «Учебный» брал на борт три человека, мог подниматься на высоту 800 м и развивать скорость около 22 км/ч. Наибольшая продолжительность полета "Учебного"составляла около 3 часов. В 1909 году дирижабль был модернизирован. Объем оболочки увеличили до 1500 куб.м, установили более мощный двигатель (18,4 кВт), заменили винты, перестроили гондолу. Однако дальнейшие полеты больших успехов не принесли, и аппарат в конце года был демонтирован.


В том же году русское военное министерство закупило во Франции на заводе «Лебоди» полужесткий дирижабль, получивший в России наименование «Лебедь». Одновременно с этим специальная комиссия инженерного ведомства под руководством профессора Н. Л. Кирпичева вела разработку и постройку первого отечественного военного дирижабля.



Этот полужесткий дирижабль, названный «Кречет», был построен в июле 1909 года. В разработке аппарата большое участие принимали инженеры Немченко и Антонов. По сравнению с его прототипом - французским дирижаблем «Patrie», в «Кречет» были внесены значительные усовершенствования. На «Кречете» отсутствовали матерчатый передний ветрорез и нижний опорный пилон гондолы, оперение с жестким каркасом было заменено двумя каплевидными горизонтальными стабилизаторами из прорезиненной ткани, сообщавшимися с основной газовой оболочкой. Кроме того, были увеличены размеры гондолы и выше расположены винты. Все это позволило существенно улучшить управляемость дирижабля и разгрузить его кормовую часть. Первый полет «Кречета» состоялся 30 июля 1910 года, т. е. через год после постройки. После проведения испытательных полетов, в которых была достигнута скорость 43 км/ч и продемонстрирована хорошая управляемость дирижабля как в вертикальной, так и в горизонтальной плоскости, «Кречет» передали в армию.



В том же 1910 году началась эксплуатация «Лебедя». Осенью 1910 года были построены еще два русских военных дирижабля мягкой системы «Голубь» и «Ястреб» («Дукс»), первый на Ижорском заводе в Колпино под Петроградом, а второй Акционерным обществом «Дукс» в Москве. «Голубь» строился по проекту профессоров Боклевского, Ван-дер-Флита и инженера В. Ф. Найденова при участии капитана Б. В. Голубова, автором «Ястреба» был А. И. Шабский.


В 1910 году Россия приобрела за границей еще четыре дирижабля: три во Франции - «Clement Bayard», названный «Беркут», «Zodiac VII» и «Zodiac IX» («Коршун» и «Чайка») - и один в Германии - «Parseval VII», получивший название «Гриф».


К началу 1911 года Россия имела девять управляемых аэростатов, из них четыре отечественной постройки, и занимала по числу дирижаблей третье место в мире после Германии и Франции. Отечественные дирижабли практически не уступали приобретаемым зарубежным аппаратам. Однако при этом не следует забывать, что за рубежом приобретались далеко не лучшие дирижабли. Что же касается жестких дирижаблей Германии того времени, имевших объем до 19 300 куб.м, скорость до 60 км/ч и дальность полета около 1600 км, то отечественные управляемые аэростаты конкурировать с ними не могли.


В 1912 году в Петрограде по проекту С. А. Немченко построили небольшой полужесткий дирижабль «Кобчик» объемом 2400 куб.м и на Ижорском заводе - «Сокол» по типу «Голубя». «Сокол» по сравнению со своими предшественниками имел лучшие обводы, более развитые рули высоты и был оборудован более мощным двигателем (59 кВт), приводившим посредством цепной передачи два воздушных винта. Удачные полеты «Голубя» и «Сокола», показавшие соответствие их летно-технических характеристик расчетам, явились основанием для закладки в 1911 году на Ижорском заводе крупного дирижабля объемом 9600 куб.м, названного «Альбатрос». Его постройка была закончена осенью 1913 года. Это был наиболее совершенный дирижабль из всех построенных на русских заводах. Он имел длину 77 м, высоту 22 м и ширину 15,5 м, развивал скорость до 68 км/ч. Максимальная высота подъема достигала 2400 м, а продолжительность полета - 20 ч. В оболочке было предусмотрено два баллонета, каждый объемом 1200 куб.м. Силовая установка состояла из двух двигателей мощностью по 118 кВт. Авторами проекта «Альбатроса» были Б. В. Голубов и Д. С. Сухоржевский.



В 1913 году за рубежом приобретаются еще три дирижабля большого объема: «Astra Torres» (10000 м3), «Clement Bayard» (9600 м3) во Франции и «Parseval XIV» (9600 м3) в Германии. Они получили в России названия соответственно «Астра», «Кондор» и «Буревестник». Наилучшими характеристиками обладал «Буревестник», развивавший скорость до 67 км/ч.


В 1914 году были заказаны крупные дирижабли объемом примерно 20 000 м3 трем заводам - Ижорскому, Балтийскому и «Клеман Баяр» во Франции.


К началу первой мировой войны в России имелось 14 дирижаблей, но из них лишь четыре «Альбатрос», «Астра», «Кондор» и «Буревестник» - по своим летно-техническим характеристикам могли с определенными оговорками считаться пригодными для участия в боевых действиях. В результате этого русские управляемые аэростаты в боевых операциях практически не применялись. Лишь дирижабль «Астра» в мае - июне 1915 года выполнил три ночных полета с бомбометанием в расположение германских войск. В этих полетах дирижабль получил много повреждений и в дальнейшем почти не эксплуатировался. Во второй половине июня 1915 года «Астру» демонтировали.


Отсутствие в России в годы первой мировой войны дирижаблей с необходимыми летно-техническими характеристиками было обусловлено рядом объективных причин. К ним относятся недоверие правительства к отечественным разработкам и связанное с этим слишком малое финансирование, а также отсутствие достаточного количества квалифицированных кадров, знакомых с устройством дирижабля, его свойствами и особенностями эксплуатации. Немаловажную роль сыграло также то, что ни на одном из отечественных заводов не выпускались мощные надежные двигатели с массовыми характеристиками, удовлетворявшими требованиям установки их на дирижабли. Двигатели приходилось также приобретать за рубежом.


Тем не менее, в проектах и конструкциях дирижаблей отечественной постройки того времени было немало оригинальных технических решений, предложенных и реализованных намного раньше, чем на зарубежных управляемых аэростатах, и получивших широкое распространение на дальнейших этапах развития дирижаблестроения.



Дирижабли - огромные заполненные газом конструкции - появились в начале XX века. В течение нескольких десятилетий все воспринимали их с энтузиазмом и считали практичным и эффективным решением для перевозки с комфортом большого количества людей или перевозки военных грузов. Но в 1930-х случилась трагедия, которая в корне изменила отношение к дирижаблям. Сегодня же, по прошествии почти века дирижабли снова возвращаются на арену, но уже в новом обличье.

Гибель «Гинденбурга» 6 мая 1937 года стала концом эпохи дирижаблей. Вид гигантского немецкого цеппелина, падающего в пламени возле Лейкхерста, Нью-Джерси, испугал людей. Дирижабль сгорел в считанные секунды, погибло 35 из 97 пассажиров, а фотографии и кинохроники жуткого события вызвали шок у людей по всему миру.

Неудивительно, что популярность полетов в массивных конструкциях, заполненных газом, упала до нуля, и индустрия так и не восстановилась. Но мечта о путешествиях в аппаратах легче воздуха не умерла до сих пор. Поэтому правительственные агентства и частные компании продолжают экспериментировать с огромными дирижаблями по сей день.

1. Aeroscraft ML866


Инженеры Aeroscraft Corporation взялись за колоссальную задачу - построить дирижабль с внутренним пространством площадью 465 квадратных метров.

Презентуемый как «летающая яхта», Aeroscraft ML866 в настоящее время пребывает в стадии постройки, и будет завершен в 2020 году. Генеральный директор и главный инженер компании Игорь Пастернак заявил, что размеры дирижабля составят 169 метров в длину и 29 метров в ширину. Для сравнения, размеры «Гинденбурга» составляли 245 метров в длину и 41 метр в ширину, а внутренняя полезная площадь - около 557 квадратных метров.

В баллоны Aeroscraft ML866 будет закачан гелий, а не легковоспламеняющийся водород, который вызвал пожар на «Гинденбурге».

При эксплуатации новый дирижабль сможет достичь крейсерской высоты 3 658 метров и сможет пролететь до 5 000 километров. Заявленная грузоподъемность - 66 тонн.

2. Airlander 10


В настоящее время крупнейший в мире летательный аппарат на гелии является Airlander 10 - спроектированный и изготовленный британской компанией Hybrid Air Vehicles аппарат, который объединяет в себе технологии вертолетов и самолетов. В длину он достигает 92 метра (для сравнения, самый большой пассажирский самолет Airbus A380 длиной всего 71 метр).

Крейсерская высота полета дирижабля составляет 6 100 м, при этом он может находиться в полете до двух недель без каких-либо людей на борту и около пяти дней с экипажем. Airlander 10 может взлетать и приземляться «почти с любой поверхности». Заявленная грузоподъемность - 9 980 килограммов.

Airlander 10 отправился в свой первый полет 17 августа 2016 года, пролетев за 19 минут 10 километров в Бедфордшире, Великобритания. При этом он достиг высоты 152 м.

3. Fireball finder


После того, как 22 апреля 2012 года в калифорнийское побережье врезался прилетевший из космоса «огненный шар размером с микроавтобус», команда ученых поднялась на борт «Цеппелин Эврика» , чтобы совершить круиз по предгорьям гор Сьерра-Невады и найти фрагменты метеорита на земле.

3 мая того же года исследователи из NASA и Института поисков внеземного интеллекта (SETI) поднялись на высоту 300 м на дирижабле, длина которого составляла 75 м (немногим больше самолета Boeing 747). В течение 5-часового полета они искали кратеры, которые могли отмечать места, где врезались в землю куски метеорита.

4. Walrus


В рамках программы Walrus в Управлении перспективных исследовательских проектов Министерства обороны США (DARPA) разрабатывается гибридный дирижабль, который будет тяжелее воздуха, а подъемную силу он будет генерировать посредством сочетания аэродинамики, вектора тяги и генерации летучего газа.

Представители DARPA заявили, что эти современные дирижабли предназначены с помощью передовых технологий преодолеть проблемы проектирования, с которыми сталкивались дирижабли в более ранние эпохи.

5. The Falcon Project


Может ли дирижабль окончательно решить загадку предполагаемого существования неуловимого гуманоида, известного как «Бигфут» или «снежный человек». Операторы проекта Falcon думают, что это возможно.

С этой целью представители проекта Falcon объявили в 2012 году, что они начнут поиск двуногого зверя, запустив развернув дистанционно управляемый наполненный гелием летательный аппарат, чтобы наблюдать с неба за лесами, где якобы видели это существо. Построенный на заказ 14-метровый Aurora Mk II будет охотиться Бигфутом, сканируя ландшафт с помощью антенн и камер с высоким разрешением, которые снимают в разных диапазонах и спектрах.

6. Рыбоподобный дирижабль


В отличие от цеппелинов, у дирижаблей нет внутренней основы, поддерживающей их «кожу», и они сохраняют свою форму исключительно из-за давления газа, который раздувает их изнутри. Подобная гибкость побудила исследователей начать разрабатывать тип силовой установки, в которой используются искусственные мышцы, чтобы продвигать дирижабль по воздуху, подобно тому, как рыба плывет в воде. Так называемые мышцы - это эластичные полимерные пленки (EAP), которые расширяются и сжимаются при столкновении с электричеством.

7. Zeppelin NT


В 2008 году дизайнерская компания Airship Ventures в Калифорнии приобрела 12-пассажирский цеппелин стоимостью 12 миллионов долларов - Zeppelin NT, построенный немецкой компанией Zeppelin Luftschifftechnik GmbH для использования в экскурсионных целях.

Цеппелины вернулись в небеса Германии в 1997 году, когда был запущен первый прототип Zeppelin NT, а это первый цеппелин, который появится в Калифорнии с 1930-х годов (тогда здесь небеса бороздили воздушные корабли US Navy Macon и USS Akron).

Воздушные корабли Zeppelin NT длиной 75 м значительно короче массивного «Гинденбурга» (245 м). Кроме того, в отличие от «Гинденбурга», современные цеппелины накачаны гелием, который несколько менее летучий, чем водород, но также гораздо менее огнеопасен.

Впрочем, на разработке одних только дирижаблей современные конструкторы не останавливаются. Одной из последних разработок стал , когда это действительно необходимо.

24 сентября 1852 г. в пригороде Парижа, Версале, поднялся в небо первый дирижабль - управляемый воздушный шар Жирар I . Длина первого дирижабля равнялась 44 м, он имел веретенообразную форму и был оснащен паровым двигателем. Его конструктор Анри-Жак Жирар, бывший железнодорожник, увлеченный строительством воздушных шаров, пролетел на своем гигантском детище больше 31 км, развив в небе над Парижем скорость 10 км/ч. Так началась эпоха дирижаблей! От воздушных шаров дирижабли отличала вытянутая, веретенообразная форма баллона. Баллон заполнялся водородом - газом, который был намного легче воздуха, двигался благодаря паровому двигателю, вращавшему винт, и управлялся с помощью руля. Во второй половине XIX в. паровой двигатель заменили двигателем внутреннего сгорания, который сконструировал Альберто Сантос-Дюмон. В начале XX в. благодаря поддержке немецкого чиновника Фердинанда фон Цеппелина началась эпоха расцвета гигантских дирижаблей.

Они использовались для перевозки грузов, а также в военных целях: во время Первой мировой войны с дирижаблей производилась бомбежка Лондона. Цеппелин ввел много новшеств: его первый баллон имел жесткую алюминиевую структуру, на которую натягивалась ткань, затем покрывавшаяся краской. Все это повышало прочность конструкции. Кроме того, там были гондолы для пассажиров и для экипажа, а длина дирижабля достигала 126 м. 2 июля 1900 г. «Цеппелин I» (Ь21), на борту которого находилось пять человек, поднялся в воздух над озером Костанца, набрал высоту 400 м и преодолел 6 км за 17 минут. В 1920 г. весьма дорогостоящие перелеты через Атлантику на дирижаблях вошли в моду среди богачей и аристократов, а дирижабли даже прозвали летающими отелями. К несчастью, из-за частых авиакатастроф, связанных с использованием легковоспламеняющегося водорода, в 1930-е гг. мода на дирижабли сошла на нет.

Вокруг света за 21 день

В 1929 г. дирижабль «Граф Цеппелин» (1.2127) облетел вокруг света за 21 день, совершив посадки лишь в Токио, Лос-Анджелесе и Лейкхерсте (штат Нью-Джерси). За девять лет полетов он пересек Атлантику 139 раз!

Самый большой дирижабль

Самым большим из когда-либо построенных дирижаблей стал «Гинденбург» (1.2129), его длина достигала 245 м, построен он был в Германии, на заводе Цеппелина. Но а судьба самого большого дирижабля закончился катастрофой.

Катастрофа гинденбурга

Катастрофа гинденбурга один из самых неприятных события в истории мира. 6 мая 1937 г., завершив свой 63-й перелет через океан, «Гинденбург» внезапно загорелся в момент посадки (фото слева). В пламени погибло 35 человек, еще 62 получили тяжелые травмы. С тех пор пассажирских дирижаблей больше не строили.

Loading...Loading...