Антенны своими руками. Антенна Харченко: расчет и изготовление Направленная антенна для 3g модема своими руками

Было изготовлено несколько вариантов антенны Харченко. Антенна проста по конструкции и довольно эффективна. Весьма популярна у любителей телевизионного приема, часто применяется для передачи данных, в том числе, в качестве внешней антенны GSM модема. Пожалуй, не стоит останавливаться на теории и расчетах, их в сети великое множество, разной степени углубленности. Здесь же похвастаюсь своими исполнениями с комментариями.

При наличии желания повторить какую либо из конструкций, нам потребуется минимальный набор слесарных инструментов, мощный паяльник, принадлежности и материалы для пайки. Лобзик по дереву. Толика терпения и аккуратности.

Можно сказать прототип, рефлектор из фольгированного стеклотекстолита. Шпильки на краешках рамки из той же проволоки – в этих местах нулевой потенциал и допускается использовать металлический крепёж, что удобно. По идее, стоит стремиться к хорошей симметрии рамки и правильности (соответствии расчетной форме), чего при изготовлении из толстой проволоки не так просто добиться. На ум приходит простая оснастка, хотя бы в виде деревянного «кубика», поместив который внутрь рамки можно деревянной же или резиновой киянкой, без фанатизма, подровнять углы и форму плечей.

Вышеупомянутая оснастка не применялась – решено было поступить более радикально, изготовив рамку из жесткого листового проводника методом выпиливания. Был применен помянутый фольгированный стеклотекстолит.

На фото, сзади рефлектора, в баночке от витаминок – модем, в него был «насмерть» впаян USB кабель длинной 35…40см, чтоб избежать лишнего разъемного соединения «на верху» и уменьшить длину модема. Рефлектор – фольгированный стелотекстолит, собственно он отпаян от предыдущей конструкции. Антенна ориентировалась узлом наведения от прошлых опытов с коллегой. Так же использовалась старая «инфраструктура» - кабели, блок питания, крепления.

Рамка была начерчена в Автокаде и распечатана в натуральную величину. Чертеж в нужном месте заготовки закреплен скотчем и слегка накернен по углам. Осталось прочертить острым шилом стороны рамки, соединяя накерненные точки и можно выпиливать. Выпиливал ручным «пионерским» лобзиком по дереву. Пилки штатные, для дерева.

Внимания заслуживает способ крепления рамки к рефлектору. Было решено крепить рамку в четырех точках. Cтойки выполнены из все того же фольгированного стеклотекстолита. Фольга кроме двухмиллиметровых полосочек по краям стравлена в хлорном железе. Монтаж пайкой, хорошо прогретым паяльником 60 Вт. Для удобства изготовлена оснастка – деревянный кубик с точно опиленными торцами. Процесс на фото. Все медное, хорошо паяется вульгарной канифолью.

Стоит сказать, что слоистые пластики, в том числе и наш стеклотекстолит, весьма пористы по происхождению, пор много и мелкие, соответственно материал гигроскопичный. Хорошим тоном будет пара слоев лака, иначе могут плавать параметры.

Последняя конструкция плавно перетекла в вариант облучателя для рефлектора от спутниковой тарелки.

Та же рамка из фольгированного материала закреплена в узле собранном из сантехнической обвязки. Кажется, это был слив (водяной затвор) для ракованы. Его диаметр хорошо подошел к штатному креплению спутникового конвертера тарелки. Рамка закреплена термоклеем в пропилах пластиковой трубы. Решение спорное и наверняка не слишком долговременное – при минусовой температуре такой клей становится довольно хрупким.

С обратной стороны удобно поместился модем, зафиксирован двумя пластинками «Пеноплекса».

Сверху плотно нахлобучен обрезок от какой то пластиковой баночки, от осадков.

Весь узел в сборе, с креплением от тарелки. Отходящий шланг и резиновая манжета от слива стиральной машины-автомата. Манжета герметично соединяет отвод с гофрированным шлангом.

Внутри в аккурат помещается стандартная USB вилка, это было очень удобно.

Самый интересный - спаренный вариант.

Изготовлена сестра-близнец предыдущей рамки со стойками. Рефлектор подобрался поосновательнее, из пластинки нержавеющей стали 1,5мм. Сталь, в том числе и нержавеющая, хорошо паяется обычными оловянно-свинцовыми припоями с «паяльной кислотой» (хлористый цинк) или ортофосфорной кислотой в качестве флюса. Не забываем место пайки хорошенько зачистить до, и хорошенько промыть (водой) после.

Для питания обеих рамок решено было задействовать часть железки от какой то военной антенны.

Железка собственно, выполняла аналогичные функции – питание четырех вибраторов в виде алюминиевых решеток. Вся конструкция складывалась, что позволяет предположить ее автомобильную, хм, базированность. Из решеток, сосед сделал воротца, а лишнее подарил мне:)

Функционально такой же дроссель, но для нашей антенны, был изготовлен из кусочка старого. Через цилиндрик, с фланцем, нужного размера, соосно был пропущен коаксиальный кабель и закреплен эпоксидным клеем.

Готовый разветвитель в сборе.


В этой статье мы рассмотрим, как можно собрать наружную антенну для 3G-интернета. Подобной информации в интернете мало, и все, что мне удалось найти стоящее, это антенна с усилением до 16.3 дБ. Быть может, у кого из читателей возникнет идея, как можно собрать по такому принципу антенну с усилением до 24 дБ и более.

Что касается материалов, то зачастую подобные антенны собирают из алюминия, но здесь автор заморачиваться не стал и собрал все из стали. По его словам, все прекрасно работает. Все узлы собираются при помощи сварки. Главное - соблюдать точность, от этого сильно зависит качество работы антенны.

Антенна имеет такие параметры:

Диаметр штанги 18 mm
Диаметр петлевого вирбатора равен 4 mm
Диаметр рефлектора/дефлектора составляет 4 mm
Рефлектор размещен от начала штанги на расстоянии 30 мм и имеет длину 81 мм
Длина волны = МГЦ 139 mm
Проектная частота = Yagi 2150,00


Материалы и инструменты для сборки 3G-антенны:
- сварка;
- сварочные электроды (для создания элементов);
- стальная труба диаметром 18 мм (это будет несущая штанга);
- соединитель труб из ПВХ (будет выступать в качестве держателя для вибратора);
- дрель;
- вешалка типа "плечики";
- саморезы;
- маркер;
- инструмент для разметки.




Приступаем к изготовлению антенны:

Шаг первый. Изготовление и установка вибратора
Вибратор изготавливается на основе указанной схемы. Устанавливать его нужно на расстоянии в 58 мм от начал штанги и в 28-ми мм от рефлектора.



Для крепления вибратора понадобится ПВХ-соединитель труб, он крепится к штанге при помощи саморезов. Что же касается фиксации вибратора, то для него в ПВХ сверлится сквозное отверстие, а затем он приклеивается при помощи эпоксидной смолы.




Шаг второй. Разметка штанги
Теперь нужно разметить штангу под установку элементов. Для этого на трубе нужно нарисовать линию, а затем накернить места для сверления в соответствии со схемой. Расстояние между элементами влияет на мощность антенны, здесь уже нужно выбирать параметры в соответствии с представленной таблицей.




Шаг третий. Установка элементов. Завершающий этап

Теперь в штанге можно сверлить отверстия под установку поперечных элементов. Отверстия должны быть просверлены очень точно, без наклона и смещения. Ну а потом можно подготавливать и устанавливать элементы, они изготавливаются из электродов. Длина также подбирается в соответствии с таблицей. Чтобы ровно установить элементы, нужно найти середину, а затем в каждую сторону прибавить по половине диаметра трубы. Затем в этих местах делаются отметки. По такой отметке после установки элемента легко определить, четко ли он стоит по центру трубы. Ну а когда элемент установлен, можно смело приваривать электроды к трубе.










Вот и все, 3G-антенная ЯГИ готова, можно переходить к испытаниям. Как видно на картинке, у автора скорость возросла с 0.11 Мбит/с до 3.21 Мбит/с, то есть до подключения антенны скорости фактически не было, не считая 10 Кбит/с.

Андрей Барышев, г. Выборг

Немалому количеству пользователей беспроводного Интернета приходится сталкиваться с проблемой низкой скорости соединения. Особенно актуальна эта проблема для абонентов, живущих за пределами крупных населенных пунктов и при большой удаленности от ближайших вышек сотовых операторов. Но и в городах с плотной застройкой может случиться так, что прием прямого сотового сигнала невозможен, приходится довольствоваться использованием отраженного сигнала, ослабленного в несколько раз. Во всех этих случаях может оказаться довольно эффективным применение дополнительных выносных антенн, предлагаемые конструкции которых различаются принципом своего построения, сложностью и заявленными радиотехническими параметрами.

В моем случае проблема состояла в крайне низкой скорости Интернет-соединения из-за большой удаленности от вышки (10 км по прямой). Кроме того, прием прямого сигнала был невозможен из-за находящихся впереди панельных пятиэтажек. По этой причине 3G-сигнал модемом практически не фиксировался, и работать можно было только в режиме GPRS (использовался модем МТС MF192+).

Были рассмотрены многочисленные способы повышения уровня принимаемого сигнала, в том числе, найденные на сайтах в Интернете. Проанализировав различные конструкции антенн и отзывы об их работе, можно было сделать вывод, что наиболее эффективно работают либо варианты направленных антенн типа «волновой канал», либо тарелки-отражатели, в фокусе которых располагается сам модем. Но изготовление таких антенн требует точных и сложных расчетов и довольно специфических материалов, поэтому делать их в домашних условиях непросто. А варианты с выносом самого модема «на улицу» (за окно, на крышу и др.) сразу отпали из-за необходимости применения USB удлинителя протяженностью более 15 м. Даже при значительно меньших размерах такого удлинителя модем может перестать нормально работать из-за затухания сигнала и падения напряжения питания. Кроме того, модем в принципе не предназначен для работы в уличных условиях при значительных перепадах температуры и влажности. Поэтому рассматривались только комнатные направленные антенны, лучшими из которых, по многочисленным отзывам, являлись антенны «зигзаг Харченко» или «би-квадрат».

Но, несмотря на внешнюю простоту, вариантов изготовления такой антенны также можно найти немало, при этом нередко указываются совершенно разные размеры составных элементов и способы компоновки всей конструкции. Для сравнения всех вариантов на практике были изготовлены и проверены в работе несколько таких антенн с различными размерами и в разных «модификациях», в том числе, варианты антенны с четырьмя и шестью квадратами (двойной и тройной «би-квадрат», соответственно). При этом мои конструкции позволяли оперативно изменять конфигурацию и размеры различных составных элементов.

Следует сказать, что в моем случае применение двойного и тройного вариантов «би-квадрата» не показало практически никакого преимущества перед обычным, простым вариантом этой антенны. Поэтому в дальнейшем будет рассмотрен подробный расчет и особенности изготовления «классической» антенны.

Расчет антенны

Для точного расчета размеров антенны не потребуется ни специальных теоретических познаний, ни каких-либо программ.

Периметр рамки антенны такого типа должен быть равен длине волны принимаемого радиосигнала. В нашем случае длину волны можно рассчитать, зная частоту сигнала 3G, которая составляет 2100 МГц. Для этого нужно разделить скорость распространения радиоволн (300,000 км/с) на частоту, в результате чего длина рамки получается равной

300,000/2,100,000 = 0.143 м.

Поскольку рамка имеет форму квадрата, следует разделить ее общую длину на 4, в результате чего получим длину каждой стороны квадрата, равную 35.75 мм. Во многих источниках можно встретить совершенно другие размеры сторон - от 27 до 53 мм. Очевидно, такие антенны рассчитаны уже на другой диапазон, например GSM или Wi-Fi, рабочие частоты у которых, соответственно, ниже или выше, чем в нашем случае.

Коэффициент усиления данной антенны примерно 6 дБ. При ее изготовлении все размеры нужно соблюдать как можно точнее, от качества изготовления сильно зависит и качество работы. Следует заметить, что любая антенна без усилителя не усиливает сигнал как таковой, а выделяет его на фоне других сигналов и различных помех (если антенна не широкополосная). За счет этого мы и получаем нужный нам сигнал, уровень которого гораздо выше уровня помех. Поэтому точное соблюдение размеров антенны важно, ведь таким образом мы получим точную настройку на нужную рабочую частоту!

Чтобы увеличить усиление до 9 дБ, можно применить рефлектор. Это может быть металлическая пластина, мелкая сетка или даже фольга, наклеенная на фанеру или плотный картон, с размерами на 10-15% больше площади «полотна» самой антенны. В данном случае рефлектор будет иметь размеры 125 × 75 мм.

Изготовление

Таким образом, антенна для приема сигналов 3G (без рефлектора) будет выглядеть, как показано на Рисунке 1.

Рисунок 1.

Для ее изготовления нам потребуется медный провод сечением не менее 4 мм 2 (можно использовать, например, «жилу» от силового электрического кабеля марки ВВГ или NUM). Периметр каждого квадрата равен длине волны - 143 мм. Поскольку антенна состоит из двух квадратов, то понадобится отрезок провода длиной 2 ×143 мм = 286 мм.

Делим провод на 8 равных отрезков и изгибаем в этих местах под углом 90°, а свободные концы спаиваем между собой, чтобы получился замкнутый контур (Рисунки 2 и 3):

Рефлектор следует закрепить позади «квадратов» антенны, причем расстояние до рефлектора тоже имеет большое значение, так как влияет на входное сопротивление и согласование с соединительным кабелем. Теоретически это расстояние должно составлять ¼ длины волны, что в нашем случае составляет 143/4 = 35.75 мм. Но моя антенна, например, лучше работает при расстоянии 18 мм, а это получается 1/8 длины волны. Поэтому расстояние до рефлектора лучше сделать регулируемым и поэкспериментировать с ним в процессе настройки. Для этого берем отрезок медной трубки подходящего диаметра (туда должен входить наш соединительный кабель), например, от телескопической антенны для приемников/телевизоров. Придаем ему форму, показанную на Рисунке 4.

В пластине рефлектора сверлим отверстие в центре, чтобы туда плотно входила эта трубка. Она не должна свободно болтаться, тогда ее можно не припаивать к рефлектору и при настройке сдвигать, регулируя расстояние до плоскости антенны. Припаиваем нашу рамку из двух квадратов к этой трубке, как показано на Рисунке 5).

Сквозь трубку пропускаем кабель и припаиваем его центральную жилу к внутреннему углу рамки напротив отверстия трубки, а оплетку-экран кабеля - к трубке с противоположной стороны рефлектора (Рисунки 6 и 7).

После окончательной настройки антенны трубку можно припаять к рефлектору. Плоскость антенны должна быть строго параллельна плоскости рефлектора, потому что даже небольшой перекос и непараллельность могут сильно снизить уровень сигнала. Для обеспечения жесткости конструкции между рефлектором и крайними углами рамки можно приклеить подкладки из текстолита или другого хорошего изолятора.

Соединение с модемом

Если на вашем модеме нет специального разъема для подключения внешней антенны, то придется сделать своеобразный адаптер, который надевается снаружи и передает сигнал на встроенную антенну модема посредством переизлучения. В простейшем случае можно просто плотно обмотать модем (в месте расположения его внутренней антенны) несколькими витками центральной жилы соединительного кабеля, как показано на Рисунке 8.

Количество витков, обычно равное 2…5, подбирается при настройке по максимуму принимаемого сигнала. Затем эти витки следует закрепить на модеме изолентой. А можно сделать конструкцию посложнее, более удобную и эффективную. Такой вариант адаптера показан на Рисунке 9.

Конструктивно он представляет собой кольцо, которое плотно облегает корпус модема в месте расположения его внутренней антенны. Кольцо можно сделать из полоски медной фольги шириной 45 мм, концы которой нужно спаять между собой. К этому кольцу припаивается центральная жила соединительного ВЧ-кабеля. Из другой полоски такой же фольги, но с размерами 25 × 75 мм, изгибается полукольцо, как показано на Рисунке 9, а к нему припаивается оплетка-экран кабеля. Электрического контакта между кольцом и полукольцом быть не должно. Регулируя положение полукольца и угол его наклона относительно модема, нужно добиться максимального уровня принимаемого сигнала. Размеры такого адаптера никак не рассчитывались теоретически, а были подобраны путем экспериментов. У модемов разных типов и моделей расположение встроенной антенны внутри корпуса также может быть разным (в районе разъема USB или на другом его конце). Это следует учитывать при расположении адаптера на корпусе вашего модема!

Соединительный ВЧ-кабель

Немного о типах и марках кабеля. Помимо качественных показателей, кабель может иметь разное волновое сопротивление - 50 или 75 Ом, что нужно принимать во внимание при его выборе. Сопротивление беспроводных модемов, как правило, составляет 75 Ом. Поэтому лучше, конечно, использовать 75-омный кабель. Судя по многочисленным рекомендациям, лучше использовать кабели марок 10D-FB, 8D-FB, 5D-FB (в порядке убывания качества) из-за малых показателей затухания сигнала. Хуже показывают себя кабели марок RG-6, RG-8Х. Поэтому, особенно при длине кабеля более 5 м, выбирайте более качественный вариант, иначе можно потерять все то «усиление», которое получите от антенны!

Настройка антенны

Расположив антенну так, чтобы она была направлена в сторону ближайшей вышки сотовой связи (желательно у окна или напротив него), отрегулируйте положение антенны и расстояние между ней и пластиной рефлектора, сдвигая трубку. Ориентироваться надо по уровню сигнала, и для этого лучше использовать специальные программы, например программу «MDMA» (можно скачать в Интернете), где есть шкала уровня сигнала в децибелах. Эта программа работает не со всеми модемами, но есть и другие, подобные ей, показывающие уровень сигнала в децибелах (отношение составляющих «сигнал/шум»). Ориентироваться можно и в стандартной программе-коннекте для вашего модема по уровню сигнала значка антенны, но это не очень удобно, потому что там, во-первых, имеет место несколько запоздалая реакция на изменение сигнала (до 10 - 20 с), а во-вторых, это будет не совсем корректно. Потому что важен именно показатель отношения сигнал/шум, а не уровень сигнала в целом.

В моем случае показатель шкалы антенны «родного» коннект-менеджера увеличился после подключения и настройки антенны несильно, всего на 2 - 3 деления. Однако скорость Интернет-соединения при этом поднялась очень ощутимо. Скорость закачек увеличилась с 0.5 Мб/с до 3…4 Мб/с в дневное время, и еще больше ночью. Без такой антенны, как уже говорилось ранее, прием сигнала 3G вообще был невозможен.

Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо

Сегодня мы с вами, уважаемый аноним займемся тяжелым вооружением, а именно разнообразными Wi-Fi/3G/4G пушками. Не так давно это оружие попало на Ютуб благодаря известным видеоблогерам под ником KREOSAN. Оно было подано в присущей этому видеоблогу манере как некий суперкреатив, поэтому анонима терзают смутные сомнения, а можно ли верить в достоверность всего этого? Давайте займемся поиском ответа на этот вопрос…

Прежде всего обратим ваше внимание, что сама идея этой Wi-Fi пушки была предложена И.Панченко на форуме lan23.ru еще в далеком 2007 году, но ни в видео, ни в описании к нему об этом нет ни слова. Не хороший поступок для суровых креосанов, не правда ли, Карл?

Правда стоит отметить, что на странице антенны на lan23.ru в описании и на картинке внизу размеры совершенно разные. Сразу скажем, что оба варианта рабочие, но какой из них выбрать?. Более того, на самом форуме и в сети можно найти еще до 3-4 различных вариантов размеров. Да и в самом креосановском видео мелькает чертеж, на котором рефлектор выполнен с бортиком, а в видео он без бортика, что опять порождает некие сомнения. Вариант без бортика изначально был предложен И.Панченко, обкатан им на реальном линке и доведен до ума по приборам, так сказать в боевых условиях. Он же реализован в видео KREOSAN. Чтобы все это понять, надо перечитать внимательно все обсуждение на форуме. А представьте себе когнитивный диссонанс анонима, который слабо понимает о чем вообще на форуме идет речь (ну не специалист он в антеннах СВЧ!) и впервые нашел это описание с непонятными размерами. Так что спасибо KREOSAN"у, что живой помог анониму определиться с выбором варианта. При анализе модели в HFSS наглядно видно, что антенна должна быть без бортика.

Как мы видим, по КСВ < 2 антенна имеет очень широкую полосу пропускания. Это обуславливает ее неплохую повторяемость, что очень важно. Плюс к этому и другие существенные преимущества антенны, о чем пишет И.Панченко в описании. Антенна известна еще со времен исторического материализма и расово правильное ее название ребристо-стержневая антенна , а вовсе никакая не "пушка". Вы можете увидеть один из ее вариантов еще на фото советского лунохода. Сейчас "new generation", не помнящие седой старины, дали ей название Patch-Yagi. Она имеет "наследственные" особенности от Uda-Yagi :

  • бесконечный набор вариантов размеров для заданных характеристик, другими словами поиск "фактических", "окончательных" правильных размеров не имеет смысла;
  • при большом числе элементов повторяемость падает, т.е. длинную "пушку" с большим числом директоров и усилением 20 dBi и более без настройки по приборам сделать не получится, работать она будет, но не лучше, а возможно даже и хуже короткой, другими словами изготовление "суперпушки" с числом директоров более 5-и в кустарных условиях не имеет смысла;

Можно конечно и здесь предъявить некие претензии, типа данный набор размеров от И.Панченко не оптимален, неидеален, не кошерный, не православный и т.д., особенно если не получилась практическая реализация пушки. А где вы видели идеальные антенны? Антенна просто очень хорошая, вот и все. Это подтверждается, кстати, непосредственными измерениями:

Представляем вашему вниманию онлайн калькулятор этой пушки для пересчета на другие частоты.Схематичное изображение 7-дисковой пушки авторства И.Панченко (или из видео KREOSAN):

ВВЕСТИ ДАННЫЕ:

Расстояния h0, h1...h5 в модели фигурируют как расстояния от начала одной пластины до начала следующей, если за точку отсчета принять тыльную сторону рефлектора и двигаться в направлении последнего директора. Таким образом, они эквивалентны расстоянием между осями пластин.

Аноним может задаться вопросом, а почему на канале у KREOSAN "3G/4G пушка" имеет на один диск меньше? Мы тоже не знаем почему, чем они руководствовались и где взяли размеры. Есть подозрение, что они взяли за основу ту самую "картинку внизу" из первоисточника, о которой мы упоминали, масштабировали размеры и выдали за свое. Их ошибка в том, что в этой конструкции бортик обязателен, и если его убрать, то резонансная частота конструкции уходит вверх. В итоге "3G пушка Креосана" по ссылке имеет центральную частоту выше рабочего диапазона. Кстати ветка форума на lan23.ru не усохла (см. ссылку ) и там обсуждается это обстоятельство. Вывод из обсуждения - 3G/4G пушка от креосанов хоть и стреляет, но "криво". Зачем нам кривые пушки? Оно нам надо терять время даром? Вот именно. Лучше вместо этого обратить внимание на широкополосный Batwing ...

Расчет 7-и дисковой пушки (которую мы рекомендуем для повторения) добавлен в наше приложение для андроид Cantennator . Тапайте на QR-код, если вы зашли сюда с мобильного или планшета или сканируйте этот код мобильным, если вы смотрите эту страничку на мониторе десктопа чтобы перейти на Google Play для загрузки. Не забудьте оценить приложение и оставить отзыв.

Особенности изготовления и конструктив антенны можно достаточно подробно посмотреть по ссылкам ниже. Отметим только, что толщину пластин можно менять в пределах 0,3..1 мм (рефлектор как несущий диск лучше взять толще, около 2 мм), а шпильки использовать не больше М6. Однако вероятность отрицательного результата будет намного меньше, если вы откажетесь от шпилек и будете паять диски на стальной или латунный штырь диаметром 2-3 мм (например на сварочный электрод как в оригинальной сборке). На самом деле применение шпилек с гайками не есть изобретение видеоблоггеров, а применялось намного раньше. Посмотрите хотя бы статью "ушкуйника" по ссылке . Просто гайками удобно подстроить уже готовую антенну по приборам (см. картинку выше, где пушка с гайками подключена к измерителю импедансов). Если у вас нет приборов, от шпилек и гаек лучше отказаться и делать по оригинальной статье (ссылка ).

Отвечаем на многочисленные просьбы пересчитать антенну на 75 Ом. Размеры пересчитывать не надо, 7-и дисковая «пушка» с равным успехом работает как на 50-омную нагрузку, так и на 75-омную. Ниже приведен график КСВ Wi-Fi 7-и дисковой «пушки», рассчитанной для диапазона Wi-Fi, запитанной кабелем RG213 с нагрузкой 50 Ом и запитанной кабелем RG6 с нагрузкой 75 Ом с «правильным» подключением. Как видим, в пределах рабочего диапазона КСВ с обеими нагрузками не превышает двух. В начале статьи изображен график КСВ этой антенны, подключенной через коннектор к 50-омной нагрузке.

Вступление и теория под катом. Внимательно прочитайте прежде, чем задавать вопросы и/или обвинять меня в некомпетентности.
В Интернете было перелопачено очень много информации по поводу самодельных внешних антенн для 3g модемов, но ничего путевого не нашел, потому и пишу эти строки. Очень умиляют люди, которые считают, что 3g это такой стандарт связи типа GSM, а на самом деле это всего лишь поколение. Эти же люди ищут чертежи антенн для 3g модема… Так вот этих чертежей нет, точнее они есть, но это то же самое, что придти на авторынок и упорно требовать карбюратор для легковой машины даже не уточнив ее модель. Так вот антенну будем конструировать для стандарта CDMA2000, у которого рабочие частоты лежат в пределах 821-894 МГц (а не 800 МГц как многие думают). Рассматриваемая здесь антенна не подойдет для операторов MTS Connect, Utel (Kyivstar). Конечно я встречал предложения ловить сигнал на «гвоздик»(он же четвертьволновой вибратор), сделать баночную антенну (вот только вся загвоздка в том, что по расчетам нужна уже не банка, а целое ведро), пресловутые антенны Харченко (хороший вариант, когда сигнал все же есть, но усиление оставляет желать лучшего) и т.д.

Я остановился на антенне типа «Волновой канал», она же Уда-Яги. Преимуществами является высокий коэффициент усиления, низкая парусность, узконаправленная ДНА, а вот недостаток крайне существенный - необходима очень высокая точность изготовления. Не по размерам изготовленный директор станет рефлектором, а активный вибратор не будет резонировать на нужной нам частоте. Чем точнее вы все сделаете, тем лучше будет результат.

Базовая станция находится всего в 3 км от моего дома, но окна выходят в другую сторону от вышки и сигнал оставляет желать лучшего. Сначала хотел изготовить антенну с 8-ю директорами, но оказалось, что здесь нужна сверхточность ибо уход на 1мм вместо усиления даст ослабление. 3-хдиректорная антенна не требует такой точности изготовления, но имеет недостаточное усиление. Потому я остановился на 5-тидиректорном волновом канале, посчитав его «золотой серединой». Приемный и передающий каналы достаточно сильно разнесены между собой, потому антенна рассчитывалась на середину приемного канала то бишь на 881 МГц. Сначала я хотел проектировать антенну на середину диапазона в целом (859 МГц), но так как Яги узкополосная антенна, то мы получим пик усиления в нерабочем диапазоне и меньшее усиление на рабочих частотах.

Для проектирования использовалась программа Yagi calculator .

Что же нам понадобится:
- алюминиевый квадратный профиль сечением 10 мм (куплен мною в эпицентре), подойдет и не алюминий, но все же он легче, но на характеристики антенны никак не влияет;
- алюминиевый стержень диаметром 5 мм и длинной 1 метр (подойдет и другой материал, в том числе и медь, что даже лучше, но алюминий это лучшее соотношение цена/качество);
- медная трубка диаметром 6 мм длинной полметра (указан внешний диаметр, толщина стенки не имеет значения);
- болты диаметром 3 мм 7 шт.;
- кабель волновым сопротивлением 50 Ом;
- переходники, разъемы - все индивидуально для каждого модема, как говорится «гугл в помощь».

Отдельно о кабеле. Вам не подойдет телевизионный кабель ввиду его сопротивления 75 Ом. Точнее его прицепить можно, но из-за несогласованности потери в кабеле с большой вероятностью будут больше, чем усиление антенны. Я брал 10 метров кабеля RG58, он довольно дешевый, но потери составляют 0,6 дБ на 1 метр кабеля, т.е. я лично потерял 6 дБ при том, что разница в сигнале с антенной и без нее составляет 20 дБ. Потому экономить на кабеле не стоит.

Из инструментов:
- пила по металлу;
- дрель;
- метчик на тройку;
- сверло 2.5; 5; 6;
- напильник плоский;
- штангенциркуль (на крайний случай линейка сойдет);
- руки.

Сначала чертежи:

Красным обозначен рефлектор, синим - активный вибратор, зеленым - директоры.

Чертеж активного вибратора (диполя):

Все размеры на чертежах указаны в миллиметрах. Расстояние между элементами указано по центрам.

Приступаем к изготовлению. Берем алюминиевый профиль, отступаем произвольное расстояние от его начала (это расстояние нужно для крепежа, я взял порядка 10 см) и делаем сквозное отверстие сверлом 5 мм. Рекомендую сразу сделать отверстие сверлом как можно меньшего диаметра, а потом разсверлить сверлом 5 мм. Это нужно для того чтобы не отклоняться от центровой оси профиля. Далее отступаем 68 мм (согласно чертежа) от центра сделанного ранее отверстия и делаем сквозное отверстие сверлом 6 мм (именно такого диаметра активный вибратор антенны). Далее все отверстия делаем сверлом 5 мм для размещения директоров.

Начинаем изготовлять рефлектор и директора. Собственно все размеры указаны на чертеже, просто хочу дать некоторые советы по резке. Режьте алюминиевый стержень по чертежу на 2-3 мм больше, после чего выставляем и фиксируем на штангенциркуле необходимую длину элемента. Подпиливаем стержни плоским напильником до нужной длины периодически контролируя размер штангенциркулем. Если элемент туго входит между губками для внутренних измерений, то можно приступать к изготовлению следующего элемента.

Достаточно сложное изготовление петлевого вибратора. Полость трубки лучше заполнить мелким сухим песком чтобы избежать переломов трубки (я обошелся без этого, но все же лучше не рисковать). Чтобы сделать окружность нужно найти близкую по диаметру трубу и перегнуть через нее медную трубку. Остальное согласно чертежа.

Для фиксации элементов в полости профиля предлагаю такой вариант. Вставив элемент в полость профиля перпендикулярно ему сверху профиля сверлим отверстие сверлом 2,5 мм и нарезаем метчиком М3 резьбу и небольшим болтом на тройку зажимаем сверху элемент (главное не перестараться ибо алюминий очень мягкий металл). Может кто-то придумает более простой или более надежный вариант, но мне показалось с моим набором инструментов это наиболее удачным способом крепления.

Все элементы необходимо отцентрировать и проверить перпендикулярность относительно траверсы (бума, как любят называть его буржуины).

Приступаем к подпайке кабеля снижения и петли согласования. Отрезаем кусок кабеля RG58 длиной 132 мм. Удаляем с каждой стороны куска кабеля 10 мм внешней изоляции стараясь не повредить оплетку. Затем оголяем внутреннюю изоляцию и скручиваем фольгу и оплетку в один пучок, сворачиваем кусок в петлю, соединяем оплетки с каждой стороны и хорошо пропаиваем. Внутреннюю изоляцию зачищаем на 8 мм. Остальное думаю понятно с рисунка:

Центральные жилы припаиваем к концам активного вибратора в месте его разрыва (15 мм на чертеже).

Некоторые пояснения. Прежде чем изменить или выкинуть из конструкции что-либо лучше спросите в комментах чтобы потом не было отзывов «а у мну не работает». Я изготовил все очень точно по расчетам, но все равно минимальный КСВ оказался не на частоте 881, а 885 МГц, что для таких частот было вполне приемлемо. Если же изготовить неточно, то эффект все равно будет, но не максимальный. На частоте передачи (средняя частота 824 МГц) антенна себя показала очень слабо, потому рекомендую все равно размещать модем в зоне наилучшего приема, потому что для передачи используется, по ощущениям, внутренняя, а не внешняя антенна.

Чуть не забыл про тесты. Для оценки результата использовалась программа AxesstelPst EvDO BSNL.
Модем просто воткнут в USB порт:

Подключаем антенну:

Что же мы имеем. Сигнал -62 дБ, для сравнения если вы стоите в 20 метрах от БС, то сигнал будет около -40 дБ, -105 дБ это почти полное отсутствие сигнала. Также интересен параметр DRC Requested. 3.072 Mbps означает, что модем запрашивает максимально возможную скорость и БС станция даст нам скорость в зависимости от загрузки сети. Конкретная же скорость зависит от загрузки базы, т.е. дальнейшее увеличение уровня сигнала улучшения скорости не даст. Скорость утром, вечером будет естественно хуже:

Удачи в изготовлении. Жду вопросов в комментариях.

Loading...Loading...